Toggle light / dark theme

Particle accelerators are crucial tools in a wide variety of areas in industry, research, and the medical sector. The space these machines require ranges from a few square meters to large research centers. Using lasers to accelerate electrons within a photonic nanostructure constitutes a microscopic alternative with the potential of generating significantly lower costs and making devices considerably less bulky.

Until now, no substantial energy gains have been demonstrated. In other words, it has not been shown that electrons really have increased in speed significantly. A team of laser physicists at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) has now succeeded in demonstrating the first nanophotonic electron accelerator – at the same time as colleagues from Stanford University.

A NIAID-funded study suggests a strategy to mitigate harmful side effects of nanoparticles in medicine. The researchers showed in animal models that a lab-made molecule safely prevented nanomedicines from activating a set of immune-system proteins called the complement system and causing negative side effects. This is significant because when nanoparticles activate complement, the resulting immune response can not only cause an adverse reaction, but also reduce the efficacy of nanomedicines.

The molecular synthesizer once thought to be impossible to make is now quite a possibility due to this discovery with electron beams that can heal crystalline structures and also build objects from electron beams this could one day be amplified to create even food with light into matter electron beams. Also this could create even life or even rebirth a universe or planet or sun really eventually anything that is matter. Really it is a molecular assembler with nearly limitless applications.


Electron beams can be used to heal nano-fractures in crystals instead of causing further damage to them, as initially expected by researchers who now report their surprise findings. Used to power microscopes that examine the smallest materials in the universe, electron beams may also be able to be used to create novel microstructures one atom at a time.

A feat once thought impossible, researchers at the University of Minnesota Twin Cities (UMN) behind the discovery said it had been assumed that using electron beams to study nanostructures carried the additional risk of exacerbating microscopic cracks and flaws already in the material.

“For a long time, researchers studying nanostructures were thinking that when we put the crystals under electron beam radiation to study them that they would degrade,” explained Andre Mkhoyan, a UMN chemical engineering and materials science professor and the lead researcher in the study.

Nanozymes are synthetic materials that mimic the properties of natural enzymes for applications in biomedicine and chemical engineering. Historically, they are generally considered too toxic and expensive for use in agriculture and food science. Now, researchers from the University of Illinois Urbana-Champaign have developed a nanozyme that is organic, non-toxic, environmentally friendly, and cost effective.

In a newly published paper, they describe its features and its capacity to detect the presence of glyphosate, a common agricultural herbicide. Their goal is to eventually create an user-friendly test kit for consumers and agricultural producers.

“The word nanozyme is derived from nanomaterial and enzyme. Nanozymes were first developed about 15 years ago, when researchers found that may perform catalytic activity similar to natural enzymes (peroxidase),” explained Dong Hoon Lee, a doctoral student in the Department of Agricultural and Biological Engineering (ABE), part of the College of Agricultural, Consumer and Environmental Sciences (ACES) and The Grainger College of Engineering at U. of I.

Researchers from Tokyo Metropolitan University have engineered a range of new single-walled transition metal dichalcogenide (TMD) nanotubes with different compositions, chirality, and diameters by templating off boron-nitride nanotubes. They also realized ultra-thin nanotubes grown inside the template, and successfully tailored compositions to create a family of new nanotubes. The ability to synthesize a diverse range of structures offers unique insights into their growth mechanism and novel optical properties.

The work is published in the journal Advanced Materials.

The is a wonder of nanotechnology. Made by rolling up an atomically thin sheet of carbon atoms, it has exceptional mechanical strength and among a range of other exotic optoelectronic properties, with potential applications in semiconductors beyond the silicon age.

A research group at the Institute for Molecular Science has successfully observed the left and right handedness of material structures at the nanoscale, by illuminating chiral gold nanostructures with circularly polarized light and detecting the optical force acting on a probe near the nanostructures. This result demonstrated that it is possible to analyze the chiral structure of matter at the nanoscale using light.

Chirality describes the property of a material structure not being superimposable onto its . Since the left and right hands, which are of each other, do not coincide (they are not the same), they are chiral.

Chiral objects can be distinguished to right-or left-handedness. Many substances that constitute life are chiral, and often only one of either the right-or left-handedness naturally exists. Also, in new functional materials, their chiral nature often plays an important role for the functions.

Scientists at the IBS Center for Quantum Nanoscience (QNS) at Ewha Womans University have accomplished a groundbreaking step forward in quantum information science. In partnership with teams from Japan, Spain, and the US, they created a novel electron-spin qubit platform, assembled atom.

An atom is the smallest component of an element. It is made up of protons and neutrons within the nucleus, and electrons circling the nucleus.

There is an urgent need to address climate change, making the development of sustainable energy alternatives more important than ever. While proton-exchange membrane fuel cells (PEMFCs) have shown great promise for energy production, particularly in the transportation industry, there is a long-standing problem with their durability and cost.

A Western research team has addressed the issue with a new cobalt-modified nanomaterial making PEMFCs more robust, readily sourced and environmentally sustainable demonstrating just a two percent loss in efficiency rate following 20,000 cycles in a durability test.

The new nanomaterial is used to enhance oxygen reduction reaction (ORR), the process that forms water in the allowing a higher current for more efficient power generation. The cobalt-modified nanomaterial also reduces the reliance on platinum to construct these fuel cells. A costly precious metal, and mined primarily in South Africa, only a few hundred tons of platinum are produced annually.