Menu

Blog

Archive for the ‘nanotechnology’ category: Page 72

Aug 8, 2022

Plasmonic nano-dynamite as power source for nanomachines

Posted by in categories: energy, nanotechnology

One convenient way to manipulate nanoscale objects with remote controllability is actuation and propulsion by light, which is largely based on optical and photothermal-induced forces. Unfortunately, the output of optical and photothermal-induced forces is small and speed is slow. This changes with a novel and intriguing nanoactuation system: plasmonic nanodynamite. This system can be optically triggered to eject gold nanobullets with an initial speed of up to 300 m/s.

Aug 8, 2022

Nanoscale Rotors Constructed From DNA — Smallest Flow-Driven Motors in the World

Posted by in categories: biotech/medical, nanotechnology

Scientists have constructed the smallest flow-driven motors in the world. Inspired by iconic Dutch windmills and biological motor proteins, they created a self-configuring flow-driven rotor from DNA that converts energy from an electrical or salt gradient into useful mechanical work. The results ope.

Aug 8, 2022

Tiny Motors Take a Big Step Forward: First-Ever Solid-State Optical Nanomotor

Posted by in categories: bioengineering, energy, nanotechnology, transportation

Motors are ubiquitous in our everyday lives — from cars to washing machines, even if we rarely notice them. A futuristic scientific field is working on the development tiny motors that could power a network of nanomachines and replace some of the power sources we currently use in electronic devices.

Researchers from the Cockrell School of Engineering at The University of Texas at Austin created the first ever solid-state optical nanomotor. All previous iterations of these light-driven motors reside in a solution of some sort, which limited their potential for the majority of real-world applications. This new research was published recently in the journal ACS Nano.

Continue reading “Tiny Motors Take a Big Step Forward: First-Ever Solid-State Optical Nanomotor” »

Aug 7, 2022

Helium-ion-beam nanofabrication: Extreme processes and applications

Posted by in categories: biological, nanotechnology

Helium ion beam (HIB) technology plays an important role in the extreme fields of nanofabrication. Due to high resolution and sensitivity, HIB nanofabrication technology is widely used to pattern nanostructures into components, devices, or systems in integrated circuits, materials sciences, nano-optics, and bio-sciences applications. HIB-based nanofabrication includes direct-write milling, ion beam-induced deposition, and direct-write lithography without the need to resist assistance. Their nanoscale applications have also been evaluated in the areas of integrated circuits, materials sciences, nano-optics, and biological sciences.

In a new paper published in the International Journal of Extreme Manufacturing, a team of researchers, led by Dr. Deqiang Wang from Chongqing Key Laboratory of Multi-scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, PR China, have summarized comprehensively the extreme processes and applications of HIB .

The main aim of this review is to address the latest developments in HIB with their extreme processing capabilities and widespread applications in nanofabrication. Based on the introduction of the HIM system with GFIS, the performance characteristics and advantages of HIB technology have been discussed first. Thereafter, certain questions about the extreme processes and applications of HIB nanofabrication have been addressed: How many extreme processes and applications of HIB technology have been developed in nanofabrication for integrated circuits, materials sciences, nano-optics, and bio-sciences applications? What are the main challenges in the extreme nanofabrication with HIB technology for high resolution and sensitivity applications?

Aug 7, 2022

Kirigami/origami: unfolding the new regime of advanced 3D micro-/nanofabrication with ‘folding’

Posted by in categories: nanotechnology, space

3D micro-/nanofabrication holds the key to building a large variety of micro-/nanoscale materials, structures, devices, and systems with unique properties that do not manifest in their 2-D planar counterparts. Recently, scientists have explored some very different 3D fabrication strategies such as kirigami and origami that make use of the science of cutting and folding 2-D materials/structures to create versatile 3D shapes. Such new methodologies enable continuous and direct 2-D-to-3D transformations through folding, bending and twisting, with which the occupied space can vary “nonlinearly” by several orders of magnitude compared to the conventional 3D fabrications. More importantly, these new-concept kirigami/origami techniques provide an extra degree of freedom in creating unprecedented 3D micro-/nanogeometries beyond the imaginable designs of conventional subtractive and additive fabrication.

In a new paper published in Light: Science & Applications, Chinese scientists from Beijing Institute of Technology and South China University of Technology made a comprehensive review on some of the latest progress in kirigami/origami in micro-/nanoscale. Aiming to unfold this new regime of advanced 3D micro-/nanofabrication, they introduced and discussed various stimuli of kirigami/origami, including capillary force, residual stress, mechanical stress, responsive force and focused-ion-beam irradiation induced stress, and their working principles in the micro-/nanoscale region. The focused-ion-beam based nano-kirigami, as a prominent example coined in 2018 by the team, was highlighted particularly as an instant and direct 2-D-to-3D transformation technique. In this method, the focused ion beam was employed to cut the 2-D nanopatterns like “knives/scissors” and gradually “pull” the nanopatterns into complex 3D shapes like “hands”.

Aug 7, 2022

Self-stabilizing photonic levitation and propulsion of nanostructured macroscopic objects

Posted by in categories: materials, nanotechnology

Circa 2019


Mechanical stability of macroscopic structures on the millimetre-, centimetre-and even metre-scale could be realized by tailoring the anisotropy of light scattering along the object’s surface, without needing to focus incident light or excessively constrain the shape, size or material composition of the object.

Aug 6, 2022

Long-Baseline Neutrino Experiments March On

Posted by in categories: biotech/medical, nanotechnology

Long-baseline neutrino experiments are paving the way for the solution of two outstanding puzzles in neutrino physics—mass ordering and charge-parity violation.


Nanoparticle “backpack” repairs damaged stem cells. Stem cells that might save a baby’s life and be utilized to treat illnesses like lymphoma and leukemia are found in the umbilical cord of newborns. Because of this, many new parents decide to preserve (“bank”) the umbilical cord blood’s abundant s.

Aug 6, 2022

New Invention Restores Life-Saving Cells

Posted by in categories: bioengineering, biotech/medical, nanotechnology

Stem cells that might save a baby’s life and be utilized to treat illnesses like lymphoma and leukemia are found in the umbilical cord of newborns. Because of this, many new parents decide to preserve (“bank”) the umbilical cord blood’s abundant stem cells for their child. However, since gestational diabetes destroys stem cells and makes them useless, parents are not given this choice in the 6 to 15% of pregnancies who are impacted by the illness.

In a study that will be published in the journal Communications Biology, bioengineers at the University of Notre Dame have now shown that a new approach may heal the injured stem cells and allow them to once again grow new tissues.

Specially-created nanoparticles are the key component of this new strategy. Each spherical nanoparticle may store medication and deliver it specifically to the stem cells by attaching it to the surface of the cells. These nanoparticles are about 150 nanometers in diameter or about a fourth of the size of a red blood cell. The particles deliver the medication gradually as a result of their unique tuning, which makes them very effective even at very low dosages.

Aug 5, 2022

First electric nanomotor made from DNA material

Posted by in categories: biotech/medical, genetics, nanotechnology

A research team led by the Technical University of Munich (TUM) has succeeded for the first time in producing a molecular electric motor using the DNA origami method. The tiny machine made of genetic material self-assembles and converts electrical energy into kinetic energy. The new nanomotors can be switched on and off, and the researchers can control the rotation speed and rotational direction.

Be it in our cars, drills or automatic coffee grinders—motors help us perform work in our everyday lives to accomplish a wide variety of tasks. On a much smaller scale, natural molecular motors perform vital tasks in our bodies. For instance, a protein known as ATP synthase produces the molecule adenosine triphosphate (ATP), which our body uses for short-term storage and transfer of energy.

While natural molecular motors are essential, it has been quite difficult to recreate motors on this scale with roughly similar to those of natural molecular motors like ATP synthase. A research team has now constructed a working nanoscale molecular rotary motor using the DNA origami method and published their results in Nature. The team was led by Hendrik Dietz, Professor of Biomolecular Nanotechnology at TUM, Friedrich Simmel, Professor of Physics of Synthetic Biological Systems at TUM, and Ramin Golestanian, director at the Max Planck Institute for Dynamics and Self-Organization.

Aug 5, 2022

This Nano-Robot Built Out of DNA Will Study Cell Processes Closely

Posted by in categories: biotech/medical, nanotechnology, robotics/AI

The researchers wanted to create robots that could pick up and sort molecules within a designated space. This makes it possible for DNA molecules to serve as the building blocks for 3D nanostructures that self-assemble in a predetermined shape. Tiny DNA-based robots and other nanodevices will deliver medicine inside our bodies, detect the presence of deadly pathogens, and help manufacture increasingly smaller electronics.

This enabled the researchers to design a nano-robot composed of three DNA origami structures. To help it maneuver within the designated space, the robot had a “leg” with a pair of feet. An “arm” with a “hand” allowed it to carry cargo, and a third component was added to tell the hand when a specific drop-off point had been reached so it would know to release the cargo. It allows researchers to carry out the entire design truly in 3D. Earlier design tools only allowed creation in 2D, forcing researchers to map their creations into 3D.

The software helps researchers design ways to take tiny strands of DNA and combine them into complex structures with parts like rotors and hinges that can move and complete a variety of tasks, including drug delivery. The robot will also enable researchers to more precisely determine important signaling pathways for a variety of biological and pathological processes that are stimulated at the cellular level during the application of force.

Page 72 of 257First6970717273747576Last