Toggle light / dark theme

Contrary to existing antimicrobial coatings, which function by eliminating microorganisms upon contact over some adequate duration of time, the technology developed by FendX takes a preventative approach. Utilizing nanotechnology to develop film and spray protective coatings that prevent microbial adherence to surfaces, thereby minimizing the potential for transmission. This is a significant departure from reactive coating surfaces in the market, offering a proactive method for reducing the occurrence and spread of HAIs.

REPELWRAP™ film, is FendX’s lead product in development and is with their manufacturer who is gearing up to conduct pilot runs on their commercial manufacturing line to create intermediate films for testing. FendX is also developing a spray-based product using their patent-pending nanotechnology. This spray offers the same preventative measures against microbial adherence and has the potential to be more versatile and easier-to-apply to surfaces. It not only demonstrates the same repelling properties but also effectively inactivates any residual microorganisms on the coated surface.

FendX is focused on healthcare settings, but is also exploring potential applications in other multiple billion high-traffic industries. It is anticipated that FendX’s future protective coatings can be applied to various high-touch surfaces: from bed rails and IV poles in healthcare to potential handrails in public transport systems to door handles in restaurants and public bathrooms. Given that the technology inhibits microbial adherence, it has the potential to significantly reduce the spread of pathogens in virtually any setting where human interaction with surfaces occurs. This broad applicability signifies that the market opportunity could be vastly larger than the projected $7.6 billion for antimicrobial coatings by 2025, opening doors to various industries and settings.

A new study, published in Nature Nanotechnology, may offer a strategy that mitigates negative side effects associated with intravenous injection of nanoparticles commonly used in medicine.

“Nanotechnology’s main advantage over conventional medical treatments is its ability to more precisely target tissues, such as targeted by chemotherapy. However, when nanoparticles are injected, they can activate part of the called complement,” said senior author Dmitri Simberg, Ph.D., professor of Nanomedicine and Nanosafety at the University of Colorado Skaggs School of Pharmacy on the University of Colorado Anschutz Medical Campus.

Complement is a group of proteins in the immune system that recognize and neutralize bacteria and viruses, including nanoparticles which are foreign to the body. As a result, nanoparticles are attacked by triggering side effects that include shortness of breath, elevated heart rate, fever, hypotension, and, in rare cases, anaphylactic shock.

Remote control of chemical reactions in biological environments could enable a diverse range of medical applications. The ability to release chemotherapy drugs on target in the body, for example, could help bypass the damaging side effects associated with these toxic compounds. With this aim, researchers at California Institute of Technology (Caltech) have created an entirely new drug-delivery system that uses ultrasound to release diagnostic or therapeutic compounds precisely when and where they are needed.

The platform, developed in the labs of Maxwell Robb and Mikhail Shapiro, is based around force-sensitive molecules known as mechanophores that undergo chemical changes when subjected to physical force and release smaller cargo molecules. The mechanical stimulus can be provided via focused ultrasound (FUS), which penetrates deep into biological tissues and can be applied with submillimetre precision. Earlier studies on this method, however, required high acoustic intensities that cause heating and could damage nearby tissue.

To enable the use of lower – and safer – ultrasound intensities, the researchers turned to gas vesicles (GVs), air-filled protein nanostructures that can be used as ultrasound contrast agents. They hypothesized that the GVs could function as acousto-mechanical transducers to focus the ultrasound energy: when exposed to FUS, the GVs undergo cavitation with the resulting energy activating the mechanophore.

From LED lights to medical imaging, quantum dots have many varied applications.

The creation of quantum dots earned its developers the Nobel Prize in Chemistry 2023, an invention that could have also been a contender for the Physics Prize. These tiny elements of nanotechnology, which are so miniature that their size dictates their properties, are today used in many useful and practical applications and have even been reported to direct surgeons as they tackle tricky tumor tissue.


Nobel Prize/Twitter.

Governed by quantum phenomena.

Would you want to live forever? On this episode, Neil deGrasse Tyson and author, inventor, and futurist Ray Kurzweil discuss immortality, longevity escape velocity, the singularity, and the future of technology. What will life be like in 10 years?

Could we upload our brain to the cloud? We explore the merger of humans with machines and how we are already doing it. Could nanobots someday flow through our bloodstreams? Learn about the exponential growth of computation and what future computing power will look like.

When will computers pass the Turing test? Learn why the singularity is nearer and how to think exponentially about the world. Are things getting worse? We go through why things might not be as bad as they seem. What are the consequences of having a longer lifetime? Will we deplete resources?

Will there be a class divide between people able to access longer lifespans? What sort of jobs would people have in the future? Explore what artificial intelligence has in store for us. What happens if AI achieves consciousness? We discuss the definition of intelligence and whether there will be a day when there is nothing left for humans to do. Will we ever see this advancement ending?

PhD candidate at UniSA’s Applied Chemistry and Translational Biomaterials (ACTB) Group, Cintya Dharmayanti, has taken out UniSA’s 2021 Three Minute Thesis (3MT) with a condensed presentation of her research about developing nanoparticles for cancer treatment, potentially leading to more effective treatments and reduced side effects. She will be competing in the 2023 FameLab National Finals with a presentation titled, “Behind enemy lines: Tiny assassins in the war against cancer.

For more from University of South Australia visit: https://www.unisa.edu.au/connect/alumni-network/alumni-news/…Track=true.

UniSA Homepage:
https://www.unisa.edu.au/

UniSA Facebook:

Summary: Pioneering artificial intelligence (AI) has astoundingly synthesized the design of a functional walking robot in a matter of seconds, illustrating a rapid-fire evolution in stark contrast to nature’s billion-year journey.

This AI, operational on a modest personal computer, crafts entirely innovative structures from scratch, distinguishing it from other AI models reliant on colossal data and high-power computing. The robot, emerging from a straightforward “design a walker” prompt, evolved from an immobile block to a bizarre, porously-holed, three-legged entity, capable of slow, steady locomotion.

Representing more than mere mechanical achievement, this AI-designed organism may mark a paradigm shift, offering a novel, unconstrained perspective on design, innovation, and potential applications in fields ranging from search-and-rescue to medical nanotechnology.

UMass Amherst researchers have pushed forward the boundaries of biomedical engineering one hundredfold with a new method for DNA detection with unprecedented sensitivity.

“DNA detection is in the center of bioengineering,” says Jinglei Ping, lead author of the paper that appeared in Proceedings of the National Academy of Sciences.

Ping is an assistant professor of mechanical and , an adjunct assistant professor in and affiliated with the Center for Personalized Health Monitoring of the Institute for Applied Life Sciences. “Everyone wants to detect the DNA at a low concentration with a high sensitivity. And we just developed this method to improve the sensitivity by about 100 times with no cost.”

An internationally-renowned Iranian scientist and this year’s winner of Iran’s prestigious Mustafa Prize for science and technology has hailed the country’s great advances in the fields of nanotechnology and medicine.

“Iran has always been far ahead in the field of nanotechnology,” Omid Farokhzad, who has won the prize for design, development, and clinical translation of novel polymeric nanomedicines used to treat various diseases, especially cancer, said on Monday.