Toggle light / dark theme

Magnetic Fields Reshape the Movement of Sound Waves in a Stunning Discovery

The term “nanoscale” refers to dimensions that are measured in nanometers (nm), with one nanometer equaling one-billionth of a meter. This scale encompasses sizes from approximately 1 to 100 nanometers, where unique physical, chemical, and biological properties emerge that are not present in bulk materials. At the nanoscale, materials exhibit phenomena such as quantum effects and increased surface area to volume ratios, which can significantly alter their optical, electrical, and magnetic behaviors. These characteristics make nanoscale materials highly valuable for a wide range of applications, including electronics, medicine, and materials science.

New Nanotech Bandages Kill Bacteria and Speed Up Healing

Researchers have developed nanoflower-coated bandages with antibiotic and anti-inflammatory properties, capable of killing bacteria and promoting wound healing.

A carnation-like nanostructure could one day be used in bandages to promote wound healing. Researchers report in ACS Applied Bio Materials that laboratory tests of their nanoflower-coated dressings demonstrate antibiotic, anti-inflammatory, and biocompatible properties.

They state that these results indicate tannic acid and copper(II) phosphate sprouted nanoflower bandages are promising candidates for treating infections and inflammatory conditions.

Unlocking Quantum Mysteries: New Device Bridges Classical and Quantum Physics

In a groundbreaking study published in the journal Optica, this innovative instrument emerges from the collaborative genius of the National Quantum Science and Technology Institute (NQSTI), incorporating expertise from several esteemed institutions. The device serves as a window into a dual universe, allowing the simultaneous examination of phenomena governed by both classical laws and the bizarre rules of quantum mechanics.

At the heart of this discovery lies the technique of optical trapping, a method that harnesses the power of light to manipulate microscopic particles. Now, empowered by the insights of physicist Francesco Marin and his team, the dual laser setup dramatically enhances our understanding of how these nano-objects interact. As they oscillate in their laser confines, the spheres reveal a dance of behaviors—some that align with our everyday experiences, and others that defy our intuition.

Printable molecule-selective nanoparticles enable mass production of wearable biosensors

The future of medicine may very well lie in the personalization of health care—knowing exactly what an individual needs and then delivering just the right mix of nutrients, metabolites, and medications, if necessary, to stabilize and improve their condition. To make this possible, physicians first need a way to continuously measure and monitor certain biomarkers of health.

To that end, a team of Caltech engineers has developed a technique for inkjet printing arrays of special that enables the mass production of long-lasting wearable sweat sensors. These sensors could be used to monitor a variety of biomarkers, such as vitamins, hormones, metabolites, and medications, in real time, providing patients and their physicians with the ability to continually follow changes in the levels of those .

Wearable biosensors that incorporate the new nanoparticles have been successfully used to monitor metabolites in patients suffering from long COVID and the levels of chemotherapy drugs in at City of Hope in Duarte, California.

Magnetic nanoparticles with enzymatic activity could improve cancer therapy

Researchers at the University of Kentucky are exploring new ways to use nanoparticles in combination with other materials as an innovative approach to cancer therapy.

The paper titled “Iron Oxide Nanozymes Enhanced by Ascorbic Acid for Macrophage-Based Cancer Therapy” was published earlier this year in Nanoscale.

Sheng Tong, Ph.D., an associate professor in the F. Joseph Halcomb II, M.D., Department of Biomedical Engineering in the UK Stanley and Karen Pigman College of Engineering, led the study.

Scientists find more microplastics in human brains than in kidneys and livers—and levels are rising

Tiny plastic particles may accumulate at higher levels in the human brain than in the kidney and liver, with greater concentrations detected in postmortem samples from 2024 than in those from 2016, suggests a paper published in Nature Medicine. Although the potential implications for human health remain unclear, these findings may highlight a consequence of rising global concentrations of environmental plastics.

The amount of environmental nano-and microparticles, which range in size from as small as 1 nanometer (one billionth of a meter) up to 500 micrometers (one millionth of a meter) in diameter, has increased exponentially over the past 50 years. However, whether they are harmful or toxic to humans is unclear. Most previous studies used visual microscopic spectroscopy methods to identify particulates in , but this is often limited to particulates larger than 5 micrometers.

Researcher Matthew Campen and colleagues used novel methods to analyze the distribution of micro-and nanoparticles in samples of , kidney, and tissues from human bodies that underwent autopsy in 2016 and 2024. A total of 52 brain specimens (28 in 2016 and 24 in 2024) were analyzed.

Researchers create nanoclusters that mimic biomolecules

Biological systems come in all shapes, sizes and structures. Some of these structures, such as those found in DNA, RNA and proteins, are formed through complex molecular interactions that are not easily duplicated by inorganic materials.

A research team led by Richard Robinson, associate professor of materials science and engineering, discovered a way to bind and stack nanoscale clusters of copper molecules that can self-assemble and mimic these complex biosystem structures at different length scales. The clusters provide a platform for developing new catalytic properties that extend beyond what traditional materials can offer.

The nanocluster core connects to two copper caps fitted with special binding molecules, known as ligands, that are angled like propeller blades.