Toggle light / dark theme

A nanoparticle formulation, using oligonucleotide chemistry, able to release a gene editing system with single cell resolution after near infrared laser activation. The full potential of the formulation was demonstrated in the brain after intracerebral and intranasal administrations. The spot of the laser defined the region of gene editing.

A small team of engineers and geophysicists from Northwestern University, the University of Chicago, and the University of Central Florida has found, via modeling, that creating millions of metal nanorods from material on the Martian surface and then blasting them into the atmosphere would be a more efficient way to heat the planet than generating greenhouse gases. Their paper is published in the journal Science Advances.

Science fiction writers have for many years envisioned a future when Mars is made habitable through terraforming techniques, allowing humans to survive without the need for special buildings and spacesuits. Recently, scientists have begun looking at the possibility, though most project ideas are far less ambitious.

Instead of completely transforming the planet, many are looking at simply warming it up a bit to make it more habitable. Most such ideas have centered on releasing greenhouse gases into the atmosphere to capture more heat from the sun. Unfortunately, there are few ingredients on the Martian surface that could be used to create and release such gases.

The retina and optic nerve share most of the brain’s biochemical properties – this way, they provide a ‘window’ into the biochemistry of the brain.

To address this lack of technological means for the early detection of TBI, Pola Goldberg Oppenheimer, a Professor in Micro-Engineering and Bio-Nanotechnology at the University of Birmingham, UK, has developed a groundbreaking laser-based, eye-safe device (EyeD) technology. This technology can detect molecular changes that reflect brain damage by scanning the back of the eye with a handheld device.

Nanobots are tiny, ~50–100 nm wide robots that perform a single, highly specialized task. They work incredibly well for administering drugs. Drugs typically act throughout the body before entering the diseased area. The medication can be precisely targeted with nanotechnology, increasing its effectiveness and lowering the possibility of negative side effects. Special sensor nanobots can be inserted into the blood under the skin where microchips, coated with human molecules and designed to emit an electrical impulse signal, monitor the sugar level in the blood.

And, if its in trees, guess where else it is, Crisis Yet? or nah.


It is well known that more and more plastic waste is ending up in soil and bodies of water. Researchers are particularly concerned about tiny micro-and nano-sized particles. It remains unclear how and to what extent they are able to enter living organisms—and what effect they may have on metabolism.

Innovative research has led to a new treatment for pancreatic cancer that utilizes nanoparticles to stimulate immune responses and improve drug delivery.

This strategy has produced significant results, with eight out of nine mice showing tumor improvements and two seeing their tumors completely eradicated. This approach holds promise for broader applications in oncology.

Innovative Pancreatic Cancer Therapy Development.

Researchers with the Advanced Science Research Center at the CUNY Graduate Center (CUNY ASRC) have experimentally demonstrated that metasurfaces (two-dimensional materials structured at the nanoscale) can precisely control the optical properties of thermal radiation generated within the metasurface itself. This pioneering work, published in Nature Nanotechnology, paves the way for creating custom light sources with unprecedented capabilities, impacting a wide array of scientific and technological applications.

Researchers have fabricated a quasi-one-dimensional van der Waals zirconium telluride thin film, which is a form of a substance that has long promised advances in quantum computing, nano-electronics and other advanced technologies. Until now, it has stumped scientists who have tried to manufacture it in large-scale quantities.

Gold does not readily lend itself to being turned into long, thin threads. But researchers at Linköping University in Sweden have now managed to create gold nanowires and develop soft electrodes that can be connected to the nervous system. The electrodes are soft as nerves, stretchable and electrically conductive, and are projected to last for a long time in the body.

Some people have a “heart of gold,” so why not “nerves of gold”? In the future, it may be possible to use this precious metal in soft interfaces to connect electronics to the nervous system for medical purposes. Such technology could be used to alleviate conditions such as epilepsy, Parkinson’s disease, paralysis or chronic pain. However, creating an interface where electronics can meet the brain or other parts of the nervous system poses special challenges.

“The classical conductors used in electronics are metals, which are very hard and rigid. The mechanical properties of the nervous system are more reminiscent of soft jelly. In order to get an accurate signal transmission, we need to get very close to the nerve fibres in question, but as the body is constantly in motion, achieving close contact between something that is hard and something that is soft and fragile becomes a problem,” says Klas Tybrandt, professor of materials science at the Laboratory of Organic Electronics at Linköping University, who led the research.