Menu

Blog

Archive for the ‘nanotechnology’ category: Page 237

Feb 6, 2017

Scientists Measure Single Quantum of Heat

Posted by in categories: nanotechnology, particle physics, quantum physics

IBM researchers have established experimental proof of a previously difficult-to-prove law of physics, and in so doing may have pointed to a way to overcome many of the heat management issues faced in today’s electronics. Researchers at IBM Zurich have been able to take measurements of the thermal conductance of metallic quantum point contacts made of gold. No big deal, you say? They conducted measurements at the single-atom level, at room temperature—the first time that’s ever been done.

These measurements confirm the Wiedemann–Franz law, which predicts that the smallest amount of heat that can be carried across a metallic junction — a single quantum of heat — is directly proportional to the quantum of electrical conductance through the same junction. By experimentally confirming this law, it can now be used with confidence to predict and to explore nanoscale thermal and electrical phenomena affecting materials down to the size of few atoms or a single molecule.

Continue reading “Scientists Measure Single Quantum of Heat” »

Feb 6, 2017

IBM Scientists Measure Heat-Transfer through Single Atoms

Posted by in categories: computing, nanotechnology, particle physics, quantum physics

Published today, using a technique which looks like trampoline, IBM scientists have measured the thermal conductance of metallic quantum point contacts made of gold down to the single-atom level at room temperature for the first time.

As everything scales to the nanoscale, heat – more precisely, the loss of it – becomes an issue in device reliability. To address this, last year, IBM scientists in Zurich and students from ETH Zurich published and patented a technique to measure the temperature of these nano-sized objects at and below 10 nanometer – a remarkable achievement. They called the novel technique scanning probe thermometry (video) and it provided engineers, for the first time, with the ability to map heat loss across a chip, and, more importantly, map heat loss down to the single device level and to map temperature distributions.

Read more

Feb 6, 2017

This mysterious $2 billion biotech is revealing the secrets behind its new drugs and vaccines

Posted by in categories: biotech/medical, nanotechnology, quantum physics, robotics/AI

I do hope people realize things like nanoparticles/ quantum bio revolutionizing everything in medicine beyond AI. Anyone, not considering in biotech and medical space in general will look dated as improved and advance options are presented that works in conjunction with our systems v. trying kill things or negatively altered our systems like chemo, radioactive treatments, and other drugs do today.


Moderna Therapeutics hopes to turn RNA into a new kind of drug. Can it live up to the hype?

Read more

Feb 4, 2017

Scientists Simulate a New Material That Could Be Even Weirder Than Graphene

Posted by in categories: computing, nanotechnology, particle physics

We all love graphene — the one-atom-thick sheets of carbon aren’t just super flexible, harder than diamond, and stronger than steel, they’ve also recently become superconductors in their own right.

But it’s not the only over-achieving nanomaterial out there. Researchers have just simulated a stretched out, one-dimensional (1D) chain of boron, predicting that the material could have even weirder properties than graphene.

Continue reading “Scientists Simulate a New Material That Could Be Even Weirder Than Graphene” »

Feb 3, 2017

Scientists Have Turned Cooking Oil Into a Material 200 Times Stronger Than Steel

Posted by in categories: mobile phones, nanotechnology, particle physics, solar power, sustainability

Graphene cooking oil?


In Brief

  • Researchers have discovered a way to make soybean oil into the super-strong material graphene. The material has a wide variety of potential uses and can revolutionize electronics.
  • The material could be used to make cell phone batteries last 25 percent longer, make more effective solar cells, and even filter fuel out of air.

Researchers have found a way to turn cheap, everyday cooking oil into the wonder material graphene – a technique that could greatly reduce the cost of making the much-touted nanomaterial.

Continue reading “Scientists Have Turned Cooking Oil Into a Material 200 Times Stronger Than Steel” »

Feb 3, 2017

Neutrons reveal ‘quantum tunnelling’ on graphene enables the birth of stars

Posted by in categories: chemistry, nanotechnology, particle physics, quantum physics, space travel

Graphene is known as the world’s thinnest material due to its 2-D structure, in which each sheet is only one carbon atom thick, allowing each atom to engage in a chemical reaction from two sides. Graphene flakes can have a very large proportion of edge atoms, all of which have a particular chemical reactivity. In addition, chemically active voids created by missing atoms are a surface defect of graphene sheets. These structural defects and edges play a vital role in carbon chemistry and physics, as they alter the chemical reactivity of graphene. In fact, chemical reactions have repeatedly been shown to be favoured at these defect sites.

Interstellar molecular clouds are predominantly composed of hydrogen in molecular form (H2), but also contain a small percentage of dust particles mostly in the form of carbon nanostructures, called polyaromatic hydrocarbons (PAH). These clouds are often referred to as ‘star nurseries’ as their low temperature and high density allows gravity to locally condense matter in such a way that it initiates H fusion, the nuclear reaction at the heart of each star. Graphene-based materials, prepared from the exfoliation of graphite oxide, are used as a model of interstellar carbon dust as they contain a relatively large amount of , either at their edges or on their surface. These defects are thought to sustain the Eley-Rideal chemical reaction, which recombines two H into one H2 molecule.

The observation of interstellar clouds in inhospitable regions of space, including in the direct proximity of giant stars, poses the question of the origin of the stability of hydrogen in the molecular form (H2). This question stands because the clouds are constantly being washed out by intense radiation, hence cracking the hydrogen molecules into atoms. Astrochemists suggest that the chemical mechanism responsible for the recombination of atomic H into molecular H2 is catalysed by carbon flakes in interstellar clouds. Their theories are challenged by the need for a very efficient surface chemistry scenario to explain the observed equilibrium between dissociation and recombination. They had to introduce highly reactive sites into their models so that the capture of an atomic H nearby occurs without fail.

Continue reading “Neutrons reveal ‘quantum tunnelling’ on graphene enables the birth of stars” »

Feb 2, 2017

Scientists build world’s tiniest hammer to bang on brain cells

Posted by in categories: biotech/medical, nanotechnology, neuroscience

Way cool.


Feb. 2 (UPI) — Scientists at the University of California, Santa Barbara want to study the effects of various mechanical forces on individual brain cells. Until now, however, researchers didn’t have the right tools.

To study brain impacts at the nanoscale, researchers built the world’s tiniest hammer — the μHammer, or “microHammer.” The μHammer is a cellular-scale machine capable of applying a variety of mechanical forces to neural progenitor cells, brain-centric stem cells. Eventually, scientists hope to use the hammer to apply forces to neurons and neural tissue.

Continue reading “Scientists build world’s tiniest hammer to bang on brain cells” »

Feb 2, 2017

The next step in nanotechnology

Posted by in categories: computing, nanotechnology

Nearly every other year the transistors that power silicon computer chip shrink in size by half and double in performance, enabling our devices to become more mobile and accessible. But what happens when these components can’t get any smaller? George Tulevski researches the unseen and untapped world of nanomaterials. His current work: developing chemical processes to compel billions of carbon nanotubes to assemble themselves into the patterns needed to build circuits, much the same way natural organisms build intricate, diverse and elegant structures. Could they hold the secret to the next generation of computing?

TEDTalks is a daily video podcast of the best talks and performances from the TED Conference, where the world’s leading thinkers and doers give the talk of their lives in 18 minutes (or less). Look for talks on Technology, Entertainment and Design — plus science, business, global issues, the arts and much more.
Find closed captions and translated subtitles in many languages at http://www.ted.com/translate

Continue reading “The next step in nanotechnology” »

Feb 2, 2017

Living Forever: What it Means to Have an “Indefinite Lifespan”

Posted by in categories: biotech/medical, life extension, nanotechnology, Peter Diamandis, singularity

Can science really enable us stick around on Earth forever? Experts haven’t developed ways to make us invincible, immortal beings who are unsusceptible to physical trauma or starvation. However, studies have been going on to make aging just another preventable disease. Effectively stalling the deterioration of our bodies would then mean humans could live indefinitely.

Peter Diamandis, co-founder of San Diego-based genotype research facility Human Longevity, Inc., spoke at the Singularity University in California last September about challenging aging and the deterioration of the body. The key to unlocking an indefinite lifespan was to improve the repair mechanisms of the body, said Diamandis. His research teams consider the possibility of using stem cells or nanomachines to regenerate our bodies.

Last year, researchers from the Stanford University School of Medicine have used chromosome extensions that dramatically increased the rate of cell division, a growth mechanism of our bodies that weakens over time. The development hints at a chance to turn back the biological clock.

Continue reading “Living Forever: What it Means to Have an ‘Indefinite Lifespan’” »

Feb 1, 2017

Missouri S&T researcher works to develop nanodiamond materials

Posted by in categories: biotech/medical, chemistry, military, nanotechnology, particle physics

Nice.


When you think of diamonds, rings and anniversaries generally come to mind. But one day, the first thing that will come to mind may be bone surgery. By carefully designing modified diamonds at the nano-scale level, a Missouri University of Science and Technology researcher hopes to create multifunctional diamond-based materials for applications ranging from advanced composites to drug delivery platforms and biomedical imaging agents.

Dr. Vadym Mochalin, an associate professor of chemistry and materials science and engineering at Missouri S&T, is characterizing and modifying 5-nanometer nanodiamond particles produced from expired military grade explosives so that they can be developed to perform specific tasks. His current research studies their use as a filler in various types of composites.

Continue reading “Missouri S&T researcher works to develop nanodiamond materials” »