Menu

Blog

Archive for the ‘nanotechnology’ category: Page 20

Mar 10, 2024

Ion Beams Unleashed: The Nanotechnology Game Changer

Posted by in categories: biological, nanotechnology, physics

The FIT4NANO project has mapped out the expansive applications and future directions of focused ion beam technology, emphasizing its critical role in advancing research and development across multiple disciplines, from microelectronics to life sciences.

Processing materials on the nanoscale, producing prototypes for microelectronics, or analyzing biological samples: The range of applications for finely focused ion beams is huge. Experts from the EU collaboration FIT4NANO have now reviewed the many options and developed a roadmap for the future. The article, published in Applied Physics Review, is aimed at students, users from industry and science as well as research policymakers.

Discovery and Applications.

Mar 9, 2024

Swiss nanotech taps into hidden energy from tap, seawater evaporation

Posted by in categories: energy, nanotechnology

“But in the process, we also made a major finding: that hydrovoltaic devices can operate over a wide range of salinities, contradicting prior understanding that highly purified water was required for best performance.”

The process can generate power around the clock since evaporation occurs at various temperatures and even at night. The process also occurs across humidities, making it suitable for use across the planet, irrespective of location.

Mar 9, 2024

Discovery of ‘molecular machine’ brings new immune therapies a step closer

Posted by in categories: biotech/medical, nanotechnology

Guanylate binding proteins (GBP) were discovered by YSM’s John MacMicking, PhD, and colleagues over a decade ago as major organizers of cellular immune response.

In a recent study, MacMicking’s team used advanced cryo-and electron microscope technology to visualize in high resolution the way GBPs…

Continue reading “Discovery of ‘molecular machine’ brings new immune therapies a step closer” »

Mar 9, 2024

Nanotech and Molecular Advances in Fighting Inflammation and Diabetes

Posted by in categories: biotech/medical, nanotechnology

Emerging nanotechnology and molecular innovations present promising strategies in combating inflammation and diabetes, aiming to transform treatment methods and improve patient outcomes significantly.


The intersection of nanotechnology and biomedicine has sparked significant advances in the treatment and understanding of both inflammatory and metabolic diseases. These advances have brought about innovative solutions to longstanding medical challenges, such as rheumatoid arthritis (RA) and type 2 diabetes mellitus (T2DM), diseases that collectively affect millions worldwide.

Continue reading “Nanotech and Molecular Advances in Fighting Inflammation and Diabetes” »

Mar 9, 2024

Multiparticle nanostructures for building better quantum technologies

Posted by in categories: nanotechnology, quantum physics

In Nature Physics, the LSU Quantum Photonics Group offers fresh insights into the fundamental traits of surface plasmons, challenging the existing understanding. Based on experimental and theoretical investigations conducted in Associate Professor Omar Magaña-Loaiza’s laboratory, these novel findings mark a significant advancement in quantum plasmonics, possibly the most noteworthy in the past decade.

While prior research in the field has predominantly focused on the collective behaviors of plasmonic systems, the LSU group adopted a distinct approach. By viewing plasmonic waves as a puzzle, they were able to isolate multiparticle subsystems, or break down the puzzle into pieces. This allowed the team to see how different pieces work together and revealed a different picture, or in this case, new behaviors for .

Plasmons are waves that move along the surface of metals when light is coupled to charge oscillations. Much like tossing pebbles into water generates ripples, plasmons are “ripples” traveling along metal surfaces. These minute waves operate on a nanometer scale, rendering them crucial in fields such as nanotechnology and optics.

Mar 9, 2024

Researchers find exception to 200-year-old scientific law governing heat transfer

Posted by in categories: engineering, nanotechnology

A team of researchers led by the University of Massachusetts Amherst has recently found an exception to the 200-year-old law, known as Fourier’s Law, that governs how heat diffuses through solid materials.

Though scientists have shown previously that there are exceptions to the law at the nanoscale, the research, published in the Proceedings of the National Academy of Sciences, is the first to show that the law doesn’t always hold true at the macro scale, and that pure electromagnetic radiation is also at work in some common materials like plastics and glasses.

“This research began with a simple question,” says Steve Granick, Robert K. Barrett Professor of Polymer Science and Engineering at UMass Amherst and the paper’s senior author. “What if heat could be transmitted by another pathway, not just the one that people had assumed?”

Mar 9, 2024

Scientists shine new light on the future of nanoelectronic devices

Posted by in categories: biotech/medical, nanotechnology, robotics/AI, solar power

Artificial intelligence (AI) has the potential to transform technologies as diverse as solar panels, in-body medical sensors and self-driving vehicles. But these applications are already pushing today’s computers to their limits when it comes to speed, memory size and energy use.

Fortunately, scientists in the fields of AI, computing and nanoscience are working to overcome these challenges, and they are using their brains as their models.

That is because the circuits, or neurons, in the have a key advantage over today’s computer circuits: they can store information and process it in the same place. This makes them exceptionally fast and energy efficient. That is why scientists are now exploring how to use materials measured in billionths of a meter— nanomaterials—to construct circuits that work like our neurons. To do so successfully, however, scientists must understand precisely what is happening within these nanomaterial circuits at the atomic level.

Mar 9, 2024

Spontaneous curvature the key to shape-shifting nanomaterials, finds study

Posted by in categories: materials, nanotechnology

Inspired by nature, nanotechnology researchers have identified ‘spontaneous curvature’ as the key factor determining how ultra-thin, artificial materials can transform into useful tubes, twists and helices.

Greater understanding of this process—which mimics how some seed pods open in nature—could unlock an array of new chiral materials that are 1,000 times thinner than a , with the potential to improve the design of optical, electronic and mechanical devices.

Chiral shapes are structures that cannot be superimposed on their mirror image, much like how your left hand is a of your right hand but cannot fit perfectly on top of it.

Mar 9, 2024

Communication between rotors in molecular motor observed for the first time

Posted by in categories: biotech/medical, chemistry, nanotechnology

A pair of chemists at the University of Groningen in the Netherlands, has observed communication between rotors in a molecular motor. In their study, reported in the Journal of the American Chemical Society, Carlijn van Beek and Ben Feringa conducted experiments with alkene-based molecular motors.

Molecular motors are natural or artificial molecular machines that convert energy into movement in living organisms. One example would be DNA polymerase turning single-stranded DNA into double-stranded DNA. In this new effort, the researchers were experimenting with light-driven, alkene-based molecular motors, using light to drive molecular rotors. As part of their experiments, they created a motor comprising three gears and two rotors and observed an instance of communication between two of the rotors.

To build their motor, the researchers started with parts of existing two motors, bridging them together. The resulting isoindigo structure, they found, added another dimension to their motor relative to other synthesized motors—theirs had a doubled, metastable intermediary connecting two of the rotors, allowing for communication between the two.

Mar 9, 2024

Nickel Nanoparticles Confined in Core–Shell Derived from Covalent Organic Framework for the Efficient Electrocatalytic NO Reduction to NH3

Posted by in category: nanotechnology

The electrocatalytic nitric oxide reduction reaction (NORR) has attracted significant attention as an ecofriendly alternative to the conventional Haber–Bosch process for producing ammonia (NH3). However, the poor selectivity to NH3 and low catalyst stability under harsh conditions are great challenges in NORR. Herein, the core–shell structure of nickel nanoparticles enclosed with a nitrogen-doped carbon layer (Ni@NC) electrocatalyst derived from covalent organic frameworks is employed for high performance in NORR. The Ni@NC-700 achieved the highest FENH3 of 82.94% with an NH3 yield rate of 19.00 μmol cm–2 h–1 at 0.16 V (vs reversible hydrogen electrode) in a 0.1 M HClO4 electrolyte. Control experiments revealed that nickel nanoparticles (Ni NPs) acted as active centers in Ni@NC for efficient production of NH3. The ideal carbon shell protection of Ni NPs and the high inherent catalytic TOF of Ni@NC-700 revealed a promising candidate for an efficient NORR electrocatalyst. The stability test demonstrated the remarkable stability of Ni@NC. The Ni NPs were protected by carbon nanostructures resembling core–shell catalysts, preventing metal dissolution during rough electrolysis.

Page 20 of 290First1718192021222324Last