Menu

Blog

Archive for the ‘nanotechnology’ category: Page 169

Jun 8, 2020

Scientists Create Tiniest Semiconductor Laser – 3,000 Times Smaller Than a Millimeter

Posted by in categories: nanotechnology, quantum physics

Scientists create smallest semiconductor laser that works in visible range at room temperature.

An international team of researchers led by researchers from ITMO University announced the development of the world’s most compact semiconductor laser that works in the visible range at room temperature. According to the authors of the research, the laser is a nanoparticle of only 310 nanometers in size (which is 3,000 times less than a millimeter) that can produce green coherent light at room temperature. The research article was published in ACS Nano.

This year, the international community of optical physicists celebrates the anniversary of a milestone event: 60 years ago, in the middle of May, American physicist Theodor Maiman demonstrated the operation of the first optical quantum generator — a laser. Now, Sixty years later, an international team of scientists published a work where they demonstrated experimentally the world’s most compact semiconductor laser that operates in the visible range at room temperature. This means that the coherent green light that it produces can be easily registered and even seen by a naked eye using a standard optical microscope.

Jun 6, 2020

New Microscope Is So Powerful It Can Watch Light Move

Posted by in categories: computing, nanotechnology

““This is the first time we can actually see the dynamics of light while it is trapped in nanomaterials, rather than relying on computer simulations,” Technion-Israel researcher Kangpeng Wang said in a press release.”


Scientists can now observe what they previously needed to simulate or model.

Jun 5, 2020

High-Speed Atomic Video: Single Molecules Captured at a Staggering 1,600 Frames per Second

Posted by in categories: entertainment, nanotechnology

A team including researchers from the Department of Chemistry at the University of Tokyo has successfully captured video of single molecules in motion at 1,600 frames per second. This is 100 times faster than previous experiments of this nature. They accomplished this by combining a powerful electron microscope with a highly sensitive camera and advanced image processing. This method could aid many areas of nanoscale research.

When it comes to film and video, the number of images captured or displayed every second is known as the frames per second or fps. If video is captured at high fps but displayed at lower fps, the effect is a smooth slowing down of motion which allows you to perceive otherwise inaccessible details. For reference, films shown at cinemas have usually been displayed at 24 frames per second for well over 100 years. In the last decade or so, special microscopes and cameras have allowed researchers to capture atomic-scale events at about 16 fps. But a new technique has increased this to a staggering 1,600 fps.

Jun 5, 2020

Self-assembling, biomimetic composites possess unusual electrical properties

Posted by in categories: engineering, nanotechnology

Sometimes, breaking rules is not a bad thing. Especially when the rules are apparent laws of nature that apply in bulk material, but other forces appear in the nanoscale.

“Nature knows how to go from the small, to larger scales,” said Melik Demirel, professor of engineering science and mechanics and holder of the Lloyd and Dorothy Foehr Huck Chair in Biomimetic Materials. “Engineers have used mixing rules to enhance properties, but have been limited to a single scale. We’ve never gone down to the next level of hierarchical engineering. The key challenge is that there are apparent forces at different scales from molecules to bulk.”

Composites, by definition, are composed of more than one component. Mixture rules say that, while the ratios of one component to another can vary, there is a limit on the physical properties of the composite. According to Demirel, his team has broken that limit, at least on the nanoscale.

Jun 4, 2020

Scientists aim gene-targeting breakthrough against COVID-19

Posted by in categories: bioengineering, biotech/medical, chemistry, genetics, nanotechnology

A team of scientists from Stanford University is working with researchers at the Molecular Foundry, a nanoscience user facility located at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab), to develop a gene-targeting, antiviral agent against COVID-19.

Last year, Stanley Qi, an assistant professor in the departments of bioengineering, and chemical and at Stanford University and his team had begun working on a technique called PAC-MAN—or Prophylactic Antiviral CRISPR in —that uses the gene-editing tool CRISPR to fight influenza.

But that all changed in January, when news of the COVID-19 pandemic emerged. Qi and his team were suddenly confronted with a mysterious new virus for which no one had a clear solution. “So we thought, ‘Why don’t we try using our PAC-MAN technology to fight it?’” said Qi.

Jun 4, 2020

Butterfly-inspired nanotech makes natural-looking pictures on digital screens

Posted by in categories: computing, mobile phones, nanotechnology

Taking inspiration from nature’s nanotech that creates the stunning color of butterfly wings, a University of Central Florida researcher is creating technology to make extremely low-power, ultra-high-definition displays and screens that are easier on the eyes.

The new technology creates digital displays that are lit by surrounding and are more natural looking than current display technologies that rely on energy-intensive bright lights hidden behind screens. The findings were published Wednesday in the journal Proceedings of the National Academy of Sciences.

“This display is more of a natural look than your current computer or smartphone screens,” said Debashis Chanda, an associate professor in UCF’s NanoScience Technology Center and principal investigator of the research. “It is like seeing a portrait on the wall at your house. It doesn’t have that glare or extra light. It is more like looking at the .”

Jun 4, 2020

World’s Smallest MRI Machine Means We Can Now Scan Individual Atoms

Posted by in categories: computing, nanotechnology, quantum physics

Unprecedented View

The researchers believe this new nanoscale imaging technique could lead to the development of new materials and drugs, as well as the creation of better quantum computing systems.

“We can now see something that we couldn’t see before,” researcher Christopher Lutz told The New York Times. “So our imagination can go to a whole bunch of new ideas that we can test out with this technology.”

Jun 4, 2020

Superlubricity and nanotechnology

Posted by in categories: biotech/medical, engineering, nanotechnology

Achieving near-zero friction in commercial and industrial applications will be game-changing from tiny microelectromechanical systems that will never wear out, to oil-free bearings in industrial equipment, to much more efficient engines and giant wind turbines scavenging energy even in low wind conditions. Superlubricity offers promising solutions to overcome lubrication challenges in various areas of nanotechnology including micro/nano-electromechanical systems (MEMS/NEMS), water transport control, biomedical engineering, atomic force microscopy (AFM), aerospace and wind energy applications, as well as other electronic devices. It is one of the most promising properties of functional nanomaterials for energy saving applications.

Jun 4, 2020

Joined nano-triangles pave the way to magnetic carbon materials

Posted by in categories: chemistry, nanotechnology, particle physics

Graphene, a two-dimensional honeycomb structure made of carbon atoms with a thickness of only one atom, has numerous outstanding properties. These include enormous mechanical resistance and extraordinary electronic and optical properties. Last year a team led by the Empa researcher Roman Fasel was able to show that it can even be magnetic: they succeeded in synthesizing a molecule in the shape of a bowtie, which has special magnetic properties.

Now, researchers report another breakthrough. Theoretical work from 2007 predicted that graphene could exhibit if it were cut into tiny triangles. Over the last three years, several teams, including the Empa team, have succeeded in producing the so-called triangulenes, consisting of only a few dozen , by chemical synthesis under ultra-high vacuum.

Jun 4, 2020

Graphene and 2-D materials could move electronics beyond ‘Moore’s law’

Posted by in categories: computing, mobile phones, nanotechnology, particle physics

A team of researchers based in Manchester, the Netherlands, Singapore, Spain, Switzerland and the U.S. has published a new review on a field of computer device development known as spintronics, which could see graphene used as building block for next-generation electronics.

Recent theoretical and experimental advances and phenomena in studies of electronic spin transport in and related two-dimensional (2-D) materials have emerged as a fascinating area of research and development.

Spintronics is the combination of electronics and magnetism, at the nanoscale and could lead to next generation high-speed electronics. Spintronic devices are a viable alternative for nanoelectronics beyond Moore’s law, offering higher energy efficiency and lower dissipation as compared to conventional electronics, which relies on charge currents. In principle we could have phones and tablets operating with spin-based transistors and memories.