Toggle light / dark theme

Religion, Radicalization and the future of Terrorism

The UK’s Guardian today published details of a report produced by Britain’s Security Service (MI5) entitled, ‘Understanding radicalization and violent extremism in the UK’. The report is from MI5’s internal behavioral analysis unit and contains within it some interesting and surprising conclusions. The Guardian report covers many of these in depth (so no need to go over here) but one point, which is worth highlighting is the claim made within the report that religion is and was not a contributory factor in the radicalization of the home-grown terrorist threat that the UK faces. In fact, the report goes on to state that a strong religious faith protects individuals from the effects of extremism.This viewpoint is one that is gathering strength and coincides with an article written by Martin Amis in the Wall Street Journal, which also argues that ‘terrorism’s new structure’ is about the quest for fame and thirst for power, with religion simply acting as a “means of mobilization”.

All of this also tends to agree with the assertion made by Philip Bobbit in ‘Terror and Consent’, that al-Qaeda is simply version 1.0 of a new type of terrorism for the 21st century. This type of terrorism is attuned to the advantages and pressures of a market based world and acts more like a Silicon Valley start-up company than the Red Brigades — being flexible, fast moving and wired — taking advantage of globalization to pursue a violent agenda.

This all somewhat begs the question of, what next? If al-Qaeda is version 1.0 what is 2.0? This of course is hard to discern but looking at the two certain trends, which will shape humanity over the next 20 years — urbanization and virtualization — throws up some interesting potential opponents who are operating today. The road to mass urbanization is currently being highlighted by the 192021 project (19 cities, 20 million people in the 21st century) and amongst other things, points to the large use of slum areas to grow the cities of the 21st century. Slum areas are today being globally exploited from Delhi to Sao Paulo by Nigerian drug organizations that are able to recruit the indigenous people to build their own cities within cities. This kind of highly profitable criminal activity in areas beyond the vision of government is a disturbing incubator.


Increased global virtualization complements urbanization as well as standing alone. Virtual environments provide a useful platform for any kind of real-life extremist (as is now widely accepted) but it is the formation of groups within virtual spaces that then spill-out into real-space that could become a significant feature of the 21st century security picture. This is happening with, ‘Project Chanology’ a group that was formed virtually with some elements of the Anonymous movement in order to disrupt the Church of Scientology. While Project Chanology (WhyWeProtest Website)began as a series of cyber actions directed at Scientology’s website, it is now organizing legal protests of Scientology buildings. A shift from the virtual to the real. A more sinister take on this is the alleged actions of the Patriotic Nigras — a group dedicated to the disruption of Second Life, which has reportedly taken to using the tactic of ‘swatting’ — which is the misdirection of armed police officers to a victim’s home address. A disturbing spill-over into real-space. Therefore, whatever pattern future terrorist movements follow, there are signs that religion will play a peripheral rather than central role.

Originally posted on the Counterterrorism blog.

$153 million/city thin film plastic domes can protect against nuclear weapons and bad weather

Cross posted from Nextbigfuture

Click for larger image

I had previously looked at making two large concrete or nanomaterial monolithic or geodesic domes over cities which could protect a city from nuclear bombs.

Now Alexander Bolonkin has come up with a cheaper, technological easy and more practical approach with thin film inflatable domes. It not only would provide protection form nuclear devices it could be used to place high communication devices, windmill power and a lot of other money generating uses. The film mass covered of 1 km**2 of ground area is M1 = 2×10**6 mc = 600 tons/km**2 and film cost is $60,000/km**2.
The area of big city diameter 20 km is 314 km**2. Area of semi-spherical dome is 628 km2. The cost of Dome cover is 62.8 millions $US. We can take less the overpressure (p = 0.001atm) and decrease the cover cost in 5 – 7 times. The total cost of installation is about 30–90 million $US. Not only is it only about $153 million to protect a city it is cheaper than a geosynchronous satellite for high speed communications. Alexander Bolonkin’s website

The author suggests a cheap closed AB-Dome which protects the densely populated cities from nuclear, chemical, biological weapon (bombs) delivered by warheads, strategic missiles, rockets, and various incarnations of aviation technology. The offered AB-Dome is also very useful in peacetime because it shields a city from exterior weather and creates a fine climate within the ABDome. The hemispherical AB-Dome is the inflatable, thin transparent film, located at altitude up to as much as 15 km, which converts the city into a closed-loop system. The film may be armored the stones which destroy the rockets and nuclear warhead. AB-Dome protects the city in case the World nuclear war and total poisoning the Earth’s atmosphere by radioactive fallout (gases and dust). Construction of the AB-Dome is easy; the enclosure’s film is spread upon the ground, the air pump is turned on, and the cover rises to its planned altitude and supported by a small air overpressure. The offered method is cheaper by thousand times than protection of city by current antirocket systems. The AB-Dome may be also used (height up to 15 and more kilometers) for TV, communication, telescope, long distance location, tourism, high placed windmills (energy), illumination and entertainments. The author developed theory of AB-Dome, made estimation, computation and computed a typical project.

His idea is a thin dome covering a city with that is a very transparent film 2 (Fig.1). The film has thickness 0.05 – 0.3 mm. One is located at high altitude (5 — 20 km). The film is supported at this altitude by a small additional air pressure produced by ground ventilators. That is connected to Earth’s ground by managed cables 3. The film may have a controlled transparency option. The system can have the second lower film 6 with controlled reflectivity, a further option.

The offered protection defends in the following way. The smallest space warhead has a
minimum cross-section area 1 m2 and a huge speed 3 – 5 km/s. The warhead gets a blow and overload from film (mass about 0.5 kg). This overload is 500 – 1500g and destroys the warhead (see computation below). Warhead also gets an overpowering blow from 2 −5 (every mass is 0.5 — 1 kg) of the strong stones. Relative (about warhead) kinetic energy of every stone is about 8 millions of Joules! (It is in 2–3 more than energy of 1 kg explosive!). The film destroys the high speed warhead (aircraft, bomber, wing missile) especially if the film will be armored by stone.

Our dome cover (film) has 2 layers: top transparant layer 2, located at a maximum altitude (up 5 −20 km), and lower transparant layer 4 having control reflectivity, located at altitude of 1–3 km (option). Upper transparant cover has thickness about 0.05 – 0.3 mm and supports the protection strong stones (rebbles) 8. The stones have a mass 0.2 – 1 kg and locate the step about 0.5 m.

If we want to control temperature in city, the top film must have some layers: transparant dielectric layer, conducting layer (about 1 — 3 microns), liquid crystal layer (about 10 — 100 microns), conducting layer (for example, SnO2), and transparant dielectric layer. Common thickness is 0.05 — 0.5 mm. Control voltage is 5 — 10 V. This film may be produced by industry relatively cheaply.

If some level of light control is needed materials can be incorporated to control transparency. Also, some transparent solar cells can be used to gather wide area solar power.


As you see the 10 kt bomb exploded at altitude 10 km decreases the air blast effect about in 1000
times and thermal radiation effect without the second cover film in 500 times, with the second reflected film about 5000 times. The hydrogen 100kt bomb exploded at altitude 10 km decreases the air blast effect about in 10 times and thermal radiation effect without the second cover film in 20 times, with the second reflected film about 200 times. Only power 1000kt thermonuclear (hydrogen) bomb can damage city. But this damage will be in 10 times less from air blast and in 10 times less from thermal radiation. If the film located at altitude 15 km, the
damage will be in 85 times less from the air blast and in 65 times less from the thermal radiation.
For protection from super thermonuclear (hydrogen) bomb we need in higher dome altitudes (20−30 km and more). We can cover by AB-Dome the important large region and full country.

Because the Dome is light weight it could be to stay in place even with very large holes. Multiple shells of domes could still be made for more protection.

Better climate inside a dome can make for more productive farming.

AB-Dome is cheaper in hundreds times then current anti-rocket systems.
2. AB-Dome does not need in high technology and can build by poor country.
3. It is easy for building.
4. Dome is used in peacetime; it creates the fine climate (weather) into Dome.
5. AB-Dome protects from nuclear, chemical, biological weapon.
6. Dome produces the autonomous existence of the city population after total World nuclear war
and total confinement (infection) all planet and its atmosphere.
7. Dome may be used for high region TV, for communication, for long distance locator, for
astronomy (telescope).
8. Dome may be used for high altitude tourism.
9. Dome may be used for the high altitude windmills (getting of cheap renewable wind energy).
10. Dome may be used for a night illumination and entertainment

Promising Anti-Radiation Drug Based on Carbon Nanotubes

The Defense Advanced Research Projects Agency (DARPA) gave a $540,000 grant to researchers from Rice University to do a fast-tracked 9-month study on a new anti-radiation drug based on carbon nanotubes:

“More than half of those who suffer acute radiation injury die within 30 days, not from the initial radioactive particles themselves but from the devastation they cause in the immune system, the gastrointestinal tract and other parts of the body,” said James Tour, Rice’s Chao Professor of Chemistry, director of Rice’s Carbon Nanotechnology Laboratory (CNL) and principal investigator on the grant. “Ideally, we’d like to develop a drug that can be administered within 12 hours of exposure and prevent deaths from what are currently fatal exposure doses of ionizing radiation.” […]

The new study was commissioned after preliminary tests found the drug was greater than 5,000 times more effective at reducing the effects of acute radiation injury than the most effective drugs currently available. […]

The drug is based on single-walled carbon nanotubes, hollow cylinders of pure carbon that are about as wide as a strand of DNA. To form NTH, Rice scientists coat nanotubes with two common food preservatives — the antioxidant compounds butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) — and derivatives of those compounds.

An interesting side benefit of the drug might be that it could also potentially help cancer patients who are undergoing radiation treatment.

More here: Feds fund study of drug that may prevent radiation injury

On the brink of Synthetic Life: DNA synthesis has increased twenty times to full bacteria size

Reposted from Next Big Future which was advancednano.

A 582,970 base pair sequence of DNA has been synthesized.

It’s the first time a genome the size of a bacterium has chemically been synthesized that’s about 20 times longer than [any DNA molecule] synthesized before.

This is a huge increase in capability. It has broad implications for DNA nanotechnology and synthetic biology.

It is particularly relevant for the lifeboat foundation bioshield project

This means that the Venter Institute is on the brink of sythesizing a new bacterial life.

The process to synthesize and assemble the synthetic version of the M. genitalium chromosome

began first by resequencing the native M. genitalium genome to ensure that the team was starting with an error free sequence. After obtaining this correct version of the native genome, the team specially designed fragments of chemically synthesized DNA to build 101 “cassettes” of 5,000 to 7,000 base pairs of genetic code. As a measure to differentiate the synthetic genome versus the native genome, the team created “watermarks” in the synthetic genome. These are short inserted or substituted sequences that encode information not typically found in nature. Other changes the team made to the synthetic genome included disrupting a gene to block infectivity. To obtain the cassettes the JCVI team worked primarily with the DNA synthesis company Blue Heron Technology, as well as DNA 2.0 and GENEART.

From here, the team devised a five stage assembly process where the cassettes were joined together in subassemblies to make larger and larger pieces that would eventually be combined to build the whole synthetic M. genitalium genome. In the first step, sets of four cassettes were joined to create 25 subassemblies, each about 24,000 base pairs (24kb). These 24kb fragments were cloned into the bacterium Escherichia coli to produce sufficient DNA for the next steps, and for DNA sequence validation.

The next step involved combining three 24kb fragments together to create 8 assembled blocks, each about 72,000 base pairs. These 1/8th fragments of the whole genome were again cloned into E. coli for DNA production and DNA sequencing. Step three involved combining two 1/8th fragments together to produce large fragments approximately 144,000 base pairs or 1/4th of the whole genome.

At this stage the team could not obtain half genome clones in E. coli, so the team experimented with yeast and found that it tolerated the large foreign DNA molecules well, and that they were able to assemble the fragments together by homologous recombination. This process was used to assemble the last cassettes, from 1/4 genome fragments to the final genome of more than 580,000 base pairs. The final chromosome was again sequenced in order to validate the complete accurate chemical structure.

The synthetic M. genitalium has a molecular weight of 360,110 kilodaltons (kDa). Printed in 10 point font, the letters of the M. genitalium JCVI-1.0 genome span 147 pages.

Help Develop the NanoShield

What’s the NanoShield you ask? It’s a long-term scientific research project aimed at creating a nanotechnoloigical immune system. You can learn more about it here.

Facebook users — please come join the cause and help fund the Lifeboat Foundation’s NanoShield project.

Not a Facebook user? No worries. By joining the Lifeboat Foundation and making even a small donation you can have a hugely positive impact on humanity’s future well being.

So why not join us?

Chinese nuclear sub shows up on Google Earth?

Increasingly, tools readily available on the Internet enable independent specialists or even members of the general public to do intelligence work that used to be the monopoly of agencies like the CIA, KGB, or MI6. Playing the role of an armchair James Bond, Hans K. Kristensen, a nuclear weapons specialist at the Federation of American Scientists (FAS) in Washington, D.C., recently drew attention to images on Google Earth of Chinese sites. Kristensen believes that the pictures shed light on China’s deployment of its second-generation of nuclear weapons systems: one appears to be a new ballistic missile submarine [see above image]; others may capture the replacement of liquid-fueled rockets with solid-fuel rockets at sites in north-central China, within range of ICBM fields in southern Russia.

Source: IEEE Spectrum. An excellent example of how open source intelligence outsmart military intelligence.

See also: Nuclear terrorism: the new day after from the Bulletin of Atomic Scientists. From the article:

Finally, there is the question of whether the U.S. government would behave with rational restraint. This, of course, assumes that there is a government. A terrorist nuclear attack on Washington could easily kill the president, vice president, much of Congress and the Supreme Court. But in a July 12 Washington Post op-ed, Norman Ornstein revealed that the federal government has refused to make contingency plans for its own nuclear decapitation, which means that U.S. nuclear weapons could be in the hands of small, enraged launch control teams with no clear line of authority above them. Assuming that the federal government was still there, however, we can only imagine (using the reaction to the loss of a mere two buildings on 9/11 as a metric of comparison) the public rage at the loss of a city and the intense, perhaps irresistible, pressure on the president to make someone, somewhere pay for this atrocity.

The Missile Shield and the Race for Space Awareness

The US-led effort to expand the military BMEWS (ballistic missile early warning radar system) to Poland and the Czech Republic provoke Russian military strategists. Putin has proposed using their already operative radar base in Azerbajian (See “Azeri radar eyed for US shield”, BBC) in exchange for information from the US system. The US/NATO proposed TMD (theater missile defense) will also integrate early warning systems for short-range missiles in southern Europe. Is the race for space awareness and the weaponization of space inevitable?

The justification for the missile shield is the potential threat of long range missiles from Iran and North Korea (See “N-Korea test fires missile”, BBC). Military experts predict that with the current progress of nuclear research and missile technology available to Iran they will pose a threat to the US in 2015. NATO and Russia co-operate in certain military matters through the Russia-Nato Council but has increasingly been in conflict over the Iranian nuclear program and the European missile shield. (See “Russia-NATO: A marriage of convenience”, RIA Novosti). Russia has also demonstrated the ineffectiveness of the missile shield by launching their RS-24 multiple missile system carrying 10 warheads (See “RS-24 Missiles to replace old systems within next few years”, Interfax).

Terrestrial radars need to be complemented by satellites to keep track of missile launches across the planet (so called “boost phase interceptors”, see “Missile defense, satellites and politics”, The Space Review) to ensure complete space awareness. The Chinese Space Agency tested an anti-satellite missile earlier this year (See “Pentagon says China’s anti-satellite test posed a threat to nations”, AP). The move towards a hot space war could be imminent. The official press release was the only information given from Chinese authorities. The secrecy surrounding space capabilities was recently challenged by French authorities when they discovered 20–30 unregistered US surveillance satellites. (See “French says ‘non’ to U.S. Disclosure of Secret Satellites”, Space.com).

The race for the control of space is threatening to destabilize established military power structures. Secrecy is not the way of solving imbalances in international relations. Space is a part of the “commons” and should be dealt with accordingly. I propose an open source approach to the space awareness problematique. There are several approaches to distributed space awareness, e.g. launching private satellites for surveillance and distribution of real-time satellite imagery in order to counter a military space race. The alternative is a UN led control organization like the IAEA.

Other organizations like the Lifeboat Foundation could also play an important role in developing a threat reduction system for the ongoing cold space war.

More advice on best actions to survive a nearby nuclear blast

Carnegie Mellon researchers Keith Florig and Baruch Fischhoff offer simple, practical advice: on whether it is worth citizens’ time to stock supplies needed for a home shelter, how urgently should one seek shelter following a nearby nuclear detonation, and how long should survivors remain in a shelter after the radioactive dust settles.


“A number of emergency-management organizations recommend that people stock their homes with a couple dozen categories of emergency supplies,” said Florig of Carnegie Mellon’s engineering and public policy department. “We calculated that it would cost about $240 per year for a typical family to maintain such a stock, including the value of storage space and the time needed to tend to it.”

Their research also suggests that many families who could afford to follow the stocking guidelines might think twice about whether the investment was really worth it, given the low probability that stocked supplies would actually be used in a nuclear emergency.

They advocate simple rules for minimizing risk based on how far people are from the blast. If you are within several miles of the blast, there will be no time to flee and you will have only minutes to seek shelter. If you are 10 miles [downwind] from the blast, you will have 15 to 60 minutes to find shelter, but not enough time to reliably flee the area before the fallout arrives,” said Florig.

However, the prior advice would suggest that if you are 10 miles from the blast that you could move perpendicular to the direction of the fallout plume and get out of the way in under 15 minutes. Needing to move one mile for smaller bombs. So I would think 10–20 miles downwind is a judgement call, but 25 miles you should be able to get out of the way of the fallout plume.

Missile Defense Shield Expands to Europe


The Ballistic Missile Early Warning Radar System (BMEWS) at Fylingdales, U.K.

The ongoing debate on the proposed missile defense shield in Europe is heating up. Poland and the Czech Republic are among the possible sites and the UK is now showing interest in supporting the missile shield. Fears over the destabilising effects of such a shield was confirmed by a Russian general who said that they would target the system.

Vladimir Putin, Russia’s president, said America would trigger an “inevitable arms race” if it deployed interceptors in Europe to knock ballistic missiles out of the sky. A senior Russian general rumbled that Russian missiles would target any interceptors in eastern Europe. Poland’s prime minister told his people that Russia was trying to “scare” them. The Czech foreign minister (a prince with a splendid moustache) complained of Russian “blackmail”.

“The aim is to break ground on a European site in 2008, and for its interceptors to become operational in 2012. This week the Polish and Czech prime ministers said they were keen on hosting the missile-defence sites. That is a change: talks with the Poles have dragged on for years, thanks to elaborate Polish demands for things such as extra missile defences for their own country. Yet both Mr Blair and his Polish rivals face objections from three sources: from Russia, from many of their own voters and from fellow European leaders.”

Source: “Missile-defence systems: Expect Fireworks”, Economist.

“In 2003, the U.K. agreed to allow the U.S. to upgrade radar stations at the Fylingdales Royal Air Force Base in northern England, one of the steps to allowing the missile shield. At the time, then-Defense Secretary Geoff Hoon said the U.K. would keep its options open about Britain taking the U.S. missile shield.”

Source: “Blair Wants Part of U.S. Missile Shield Based in U.K.”, Bloomberg.

Read more about the RAF Fylingdales base from Wikipedia

Space Arms Race, Here we Come!

From WIRED.com:

The revelation last week that China had slammed a medium-range ballistic missile into one of its aging satellites on January 11 and littered space with junk fragments has created its own form of political debris in Washington, D.C.

The test, which the United States military had long anticipated, has touched off debate over how the U.S. government should interpret and respond to China’s actions.

“It’s a very provocative act,” said Gregory Kulacki, a senior analyst and China expert with the Union of Concerned Scientists. However, “policy makers should respond on the basis of accurate information, not military rhetoric and propaganda.”

For advocates of a more aggressive American posture in space, the anti-satellite test — the first since the United States conducted one in 1985 — confirms long-held suspicions about China’s military ambition in space, and justifies the need for increased spending on space-based weapons programs that recall the star-wars aspirations of the Reagan presidency.

“I hope the Chinese test will be a wake up call to people,” said Hank Cooper, a former director of the Strategic Defense Initiative (SDI) program and the chairman of High Frontier, a missile defense advocacy group. “I’d like to see us begin a serious anti-satellite program. We’ve been leaning on the administration. This argument to prevent weaponization of space is really silly.”

It’s true — when one nation moves into space weapons, others are forced to follow just to keep up. It’s the Red Queen scenario, where you have to keep moving forward just to stay in the same place. Because preventing the weaponization of space is likely impossible, it looks like we will have to come to terms with it. One beneficial side effect of a space weapons could be the development of better space systems in general, which could eventually be used to create autonomous colonies.

/* */