Menu

Blog

Archive for the ‘materials’ category: Page 84

Feb 24, 2023

Short electrical pulses switch superconductivity on and off in magic-angle graphene

Posted by in categories: materials, particle physics

Superconductivity can be switched on and off in “magic-angle” graphene using a short electrical pulse, according to new work by researchers at Massachusetts Institute of Technology (MIT). Until now, such switching could only be achieved by sweeping a continuous electric field across the material. The new finding could help in the development of novel superconducting electronics such as memory elements for use in two-dimensional (2D) materials-based circuits.

Graphene is a 2D crystal of carbon atoms arranged in a honeycomb pattern. Even on its own, this so-called “wonder material” boasts many exceptional properties, including high electrical conductivity as charge carriers (electrons and holes) zoom through the carbon lattice at very high speeds.

In 2018, researchers led by Pablo Jarillo-Herrero of MIT found that when two such sheets are placed on top of each other with a small angle misalignment, things become even more fascinating. In this twisted bilayer configuration, the sheets form a structure known as a moiré superlattice, and when the twist angle between them reaches the (theoretically predicted) “magic angle” of 1.08°, the material begins to show properties such as superconductivity at low temperatures – that is, it conducts electricity without any resistance.

Feb 23, 2023

Old fungus could soon be used to make new plastics

Posted by in category: materials

The fungus has been traditionally used as a fire starter.

A fungus called tinder fungus that grows on the bark of rotting beech and birch trees has been used as a fire starter for a long time, but it may just have a new use: the creation of plastics.

Researchers at the VTT Technical Research Centre of Finland proceeded to analyze the internal structure of the fungus, formally called Fomes fomentarius, to understand its strong yet lightweight consistency.

Continue reading “Old fungus could soon be used to make new plastics” »

Feb 23, 2023

Study unveils an antiferromagnetic metal phase in an electron-doped rare-earth nickelate

Posted by in categories: materials, particle physics

Researchers at Harvard University, the Lawrence Berkeley National Laboratory, Arizona State University, and other institutes in the United States have recently observed an antiferromagnetic metal phase in electron-doped NdNiO3 a material known to be a non-collinear antiferromagnet (i.e., exhibiting an onset of antiferromagnetic ordering that is concomitant with a transition into an insulating state).

“Previous works on the rare-earth nickelates (RNiO3) have found them to host a rather exotic of magnetism known as a ‘noncollinear antiferromagnet,’” Qi Song, Spencer Doyle, Luca Moreschini and Julia A. Mundy, Four of the researchers who carried out the study, told Phys.org.

“This type of magnet has unique potential applications in the field of spintronics, yet rare-earth nickelates famously change spontaneously from being metallic to insulating at the exact same temperature that this noncollinear antiferromagnet phase turns on. We wanted to see if we could somehow modify one of these materials in a way so that it remained metallic, but still had this interesting magnetic phase.”

Feb 23, 2023

Triangular Ascension — Dimensional Warp

Posted by in categories: law, materials

Excerpt from album: Leviathan Device. Label: Cyclic Law. Release date: 2011. Country: Canada.

http://www.cycliclaw.com/

Continue reading “Triangular Ascension — Dimensional Warp” »

Feb 23, 2023

Electronic bandage speeds wound healing and dissolves into body after use

Posted by in categories: biotech/medical, materials

The days of ripping off a Band-Aid could soon be in the past, with scientists creating a new affordable, flexible electronic covering that not only speeds and wirelessly monitors healing but performs a disappearing act by being harmlessly absorbed into the body when its job is done.

“Although it’s an electronic device, the active components that interface with the wound bed are entirely resorbable,” said Northwestern University’s John A. Rogers, who co-led the study. “As such, the materials disappear naturally after the healing process is complete, thereby avoiding any damage to the tissue that could otherwise be caused by physical extraction.”

Continue reading “Electronic bandage speeds wound healing and dissolves into body after use” »

Feb 22, 2023

Evaluating the effect of manuka honey on collagen scaffolds

Posted by in categories: biotech/medical, materials

The bones of the face and skull can be affected due to a wide range of conditions, including cleft palate defects, traumatic injuries, cancer, and bone loss from dentures. Although bone replacements are routinely used to regenerate the missing tissue, they are vulnerable to bacterial infection. In a new study, researchers investigated whether manuka honey, made from tea trees, can be used to resist bacterial infection and promote bone growth.

Bone implants account for 45% of all hospital-contracted infections, impeding healing. Typically, these implants are made from biomaterials that contain extracellular matrix components—molecules that provide structural support to cells. However, researchers commonly use metal implants or synthetic polymers to study defects and infections. Therefore, there is a gap in the understanding of how biomaterials behave in response to infection.

“Imagine a metal versus something soft and porous that is made up of extracellular matrix components. They have very different characteristics,” said Marley Dewey, a former graduate student in the Harley lab and the first author of the paper. “Using our scaffolds, this is the first paper to look at how these materials become infected.”

Feb 22, 2023

Researchers make a new type of quantum material with a dramatic distortion pattern

Posted by in categories: materials, quantum physics

Researchers at the Department of Energy’s SLAC National Accelerator Laboratory and Stanford University have created a new type of quantum material whose atomic scaffolding, or lattice, has been dramatically warped into a herringbone pattern.

The resulting distortions are “huge” compared to those achieved in other materials, said Woo Jin Kim, a postdoctoral researcher at the Stanford Institute for Materials and Energy Sciences (SIMES) at SLAC who led the study.

“This is a very fundamental result, so it’s hard to make predictions about what may or may not come out of it, but the possibilities are exciting,” said SLAC/Stanford Professor and SIMES Director Harold Hwang.

Feb 22, 2023

Caught in the act: supermassive black hole 8.5 billion light years away has violent stellar snack

Posted by in categories: cosmology, materials

A supermassive black hole at the centre of a galaxy some 8.5 billion years way has ripped apart a nearby star, producing some of the most luminous jets ever seen.

When stars and other objects stray too close to a supermassive black hole they are destroyed by the black hole’s immense gravity.

These occurrences, known as tidal-disruption events (TDEs), result in a circling disk of material that is slowly pulled into the black hole and very occasionally, as in the case of supermassive black hole AT2022cmc, ejecting bright beams of material travelling close to the speed of light.

Feb 22, 2023

A New Route to Room-Temperature Ferromagnets

Posted by in category: materials

A novel crystalline material is readily grown from low-melting-temperature mixtures—a result that points toward a new route to above-room-temperature ferromagnets.

Feb 21, 2023

Researchers at Purdue unlock light-matter interactions on sub-nanometer scales, leading to ‘picophotonics’

Posted by in categories: materials, quantum physics

Researchers at Purdue University have discovered new waves with picometer-scale spatial variations of electromagnetic fields which can propagate in semiconductors like silicon. The research team, led by Dr. Zubin Jacob, Elmore Associate Professor of Electrical and Computer Engineering and Department of Physics and Astronomy (courtesy) published their findings in APS Physics Review Applied in a paper titled, “Picophotonics: Anomalous Atomistic Waves in Silicon.”

“The word microscopic has its origins in the length scale of a micron which is a million times smaller than a meter. Our work is for light matter interaction within the picoscopic regime which is far smaller, where the discrete arrangement of atomic lattices changes light’s properties in surprising ways.” says Jacob.

These intriguing findings demonstrate that natural media host a variety of rich light-matter interaction phenomena at the atomistic level. The use of picophotonic waves in semiconducting materials may lead researchers to design new, functional optical devices, allowing for applications in quantum technologies.

Page 84 of 280First8182838485868788Last