Toggle light / dark theme

DNA used to assemble nanoparticles into a copy of the crystalline structure of diamond

Building building diamond lattices through DNA.


Using bundled strands of DNA to build Tinkertoy-like tetrahedral cages, scientists at the U.S. Department of Energy’s Brookhaven National Laboratory have devised a way to trap and arrange nanoparticles in a way that mimics the crystalline structure of diamond. The achievement of this complex yet elegant arrangement, as described in a paper published February 5, 2016, in Science, may open a path to new materials that take advantage of the optical and mechanical properties of this crystalline structure for applications such as optical transistors, color-changing materials, and lightweight yet tough materials.

“We solved a 25-year challenge in building diamond lattices in a rational way via self-assembly,” said Oleg Gang, a physicist who led this research at the Center for Functional Nanomaterials (CFN) at Brookhaven Lab in collaboration with scientists from Stony Brook University, Wesleyan University, and Nagoya University in Japan.

The scientists employed a technique developed by Gang that uses fabricated DNA as a building material to organize nanoparticles into 3D spatial arrangements. They used ropelike bundles of double-helix DNA to create rigid, three-dimensional frames, and added dangling bits of single-stranded DNA to bind particles coated with complementary DNA strands.

Read more

MIT engineers have developed a new kind of RFID chip that’s nearly impossible to hack

Non-hackable RFIDs


You might not realize it, but radio frequency identification (RFID) tech is everywhere these days. From the cards in your wallet, to inventory control in warehouses, it’s the technology that works behind the scenes to power the world around you. RFID has brought efficiency to complicated industries and makes our tiny devices and everyday carry items speak to each other. But RFID technology has also been very vulnerable to security attacks and information hackers – until now. A team of researchers from MIT and Texas Instruments have developed a new kind of RFID chip that they believe is impossible to hack.

The new RFID chip is made of ferroelectric crystals, which are material made up of molecules arranged in a lattice pattern across three dimensions. Thanks to this unique structure, when you apply electricity to the lattice, each cell can be polarized as either positive or negative, representing the values of a bit of information. Because the cells retain their polarization when the electric field is removed, the chips can store data even when they’re powered off. Texas Instruments developed a series of 3.3-volt capacitors for the chip’s energy source, and 1.5-volt cells for data storage.

Related: This RFID-blocking wallet keeps your cards safe and cuts down on clutter.

Read more

Graphene Brain Implants May Help Patients Regain Sensory Functions And Control Motor Disorders

Graphene; the material for brain chip implants; however, Q-Dots ferrofluid is where it will make us totally rethink brain implants in the future.


A new technology developed by researchers in Italy and the United Kingdom allows for the creation of graphene-based materials that can be interfaced with neurons without losing its electrical conductivity. This can lead to the creation of neural electrodes that are not only biocompatible, but stable within the body as well. (Photo : University of Cambridge)

Scientists from the United Kingdom and Italy have developed a new process in which a carbon form known as graphene is combined with neurons without sacrificing the integrity of these cells.

This revolutionary technology is believed to be a stepping stone for the creation of graphene-based electrodes, which can be implanted in the brain of people with motor disorders, such as Parkinson’s disease, in order to regain control of their damaged limbs.

Read more

Quantum gas, liquid and crystal all-in-one

I don’t claim to be the expert on all things Quantum by no stretch; however, this is an amazing discovery and huge step forward for Quantum.

Quantum gas and liquid/ ferrofluid (quantum fluid made of tiny magnets). Now there’s a concept. Q-Dots as ferrofluid flowing through out your system (which is already comprised of about 72% H2O; think about how liquid Q-Dots can be easily absorb as a liquid and given your brain, heart, etc. run on electro charges and sensors; it could definitely open the discussion why even bother with nuero implants when Q-ferrofluid could actually be absorbed and manipulated to target the right areas for fighting diseases or improving brain functions.


The world of quantum mechanics happens only in small scales around a few nanometers. In this nanoworld, particles can behave like waves, and vice versa and have only some probability to be in a particular region. These effects can be directly observed in ultracold dilute gases. For this purpose thousands or a million atoms are cooled down to a few billionth of a degree above absolute zero. At such low temperatures particles become indistinguishable und unite collecitvely to a single giant matter wave called Bose-Einstein condensate which has astonishing properties. The matter wave flows as quantum fluid practically without inner friction, thus it is namedsuperfluid.

Researchers around Tilman Pfau at the Center for Integrated Quantum Science and Technology IQST in Stuttgart (Germany) created such a quantum fluid made of tiny magnets – that are atoms of the most magnetic element dysprosium. They call it “quantum ferrofluid” since it is superfluid and has magnetic properties similar to classical ferrofluids. Ferrofluids consist of ferromagnetic nanoparticles dissolved in oil or water. When a strong magnetic field is applied perpendicular to the surface of the ferrofluid it undergoes a so-called Rosensweig instability. The surface is no longer smooth like normal fluids, but it generates a regular thorny surface resembling a hedgehog. From the point view of the tiny magnets in a ferrofluid, every south- and northpole attract each other. Therefore, it is energetically favourable to be on top of each other along the field direction, so the fluid grows peaks out of the smooth surface.

For their investigations the researchers from Stuttgart created a quantum ferrofluid with 15,000 atoms and induced a magnetic instability. They observed then the emergence of regular patterns consisting of microscopic droplets, similar to the Rosensweig instability of ferrofluids. Each droplet has a radius smaller than 1 µm and their existence was not expected with the current state of research on these systems. Their observation could thus lead to a new field of research, as the researchers expect quantum fluctuations, related to Heisenberg’s uncertainty principle,to play an important role in the droplet existence. These quantum fluctuations allow a unique state of matter that connects opposite properties of gases, crystals and superfluids. This connectioncould be the path to a so-called supersolid, a spatially ordered material with superfluid properties.

Read more

Princeton research benefits sustainability, cybersecurity and other societal goals

I shared this same point of view yesterday; and glad to see Princeton shares the same perspective on Quantum and it’s abundant capabilities. Again; Quantum is going to truly change (if not everything) almost everything that we consume, use, and interact with even in raw material enrichment will benefit from Quantum.


Claire White, an assistant professor of civil and environmental engineering and the Andlinger Center for Energy and the Environment, studies ways to make building materials more sustainable. It turns out that cement production creates a lot of carbon dioxide, so much that it accounts for roughly 5 to 8 percent of man-made carbon dioxide emissions globally. White and her team are developing new types of cement using industrial byproducts such as coal fly ash and blast-furnace slag. They make these materials more durable by adding nanoparticles.

Watch Assistant Professor Claire White explain her research on a more sustainable type of cement.

Read more

Hexagon Resources to access high-purity graphite markets in 2017

Graphene is coming to the market in Q3 2017 by Hexagon Resources. What is also important about this is not only what graphene does for batteries; is 1 day ago when researchers in Italy released their findings in how graphene can be implanted in the brain without damaging brain cells. Therefore, there is huge potential for grapheme beyond batteries and electronics.


Hexagon Resources is on track for first production next year at its McIntosh project in Western Australia, where the country’s biggest flake graphite resource is already demonstrating huge potential for meeting high-value markets and growing significantly in size.

Read more

Smartphones Could Generate Own Power with New Coating

A transparent material that can be attached to a smartphone’s touch screen could help the device generate electricity whenever anyone taps it, researchers in China say.

Touch screens are now found on most cell phones and tablet computers. Using a touch screen typically involves finger taps, and scientists at Lanzhou University in China reasoned that the mechanical energy from these motions could be converted into electricity to charge the phone’s batteries, which could significantly extend the working time of these portable devices.

The researchers developed a new material based on a transparent silicone rubber known as PDMS. Scientists embedded wires in this rubber that were made of lead zirconate titanate that were only 700 nanometers, or billionths of a meter, wide. For perspective, this is about 140 times thinner than the average width of a human hair. [Top 10 Inventions That Changed the World].

Read more

Futurologist Dr Ian Pearson says technology is causing humans to ‘evolve’

I still get a kick out of these types of articles because it is the classic “Fear of the Unknown” getting folks worked up. A) we don’t have enough information to confirm or not confirm whether humans will totally disappear and morph into a half Human and half machine species. B) it doesn’t scare me at all because I will make the choice if I decide that I want or need an implant. And, if I do, then more than likely it was to help me beat a disease like cancer or to enrich my life somehow just like I would opt for a surgery or procedure today. Nothing more.

However, there is one thing that is certain and that is Quantum Technology itself is going to truly transform everything in our lives. And, I mean EVERYTHING (medical/ healthcare, manufacturing, AI, devices, communications, services, raw materials enrichment, etc.).


Ipswich-based Futurologist Dr Ian Pearson has explained how technology will impact on our evolution, such as the rise of Homo optimus — and how it could affect our pets’.

Read more