Toggle light / dark theme

Imagine tires that charge a vehicle as it drives, streetlights powered by the rumble of traffic, or skyscrapers that generate electricity as the buildings naturally sway and shudder.

These energy innovations could be possible thanks to researchers at Rensselaer Polytechnic Institute developing environmentally friendly materials that produce electricity when compressed or exposed to vibrations.

In a recent study published in the journal Nature Communications, the team developed a polymer film infused with a special chalcogenide perovskite compound that produces electricity when squeezed or stressed, a phenomenon known as the piezoelectric effect. While other piezoelectric materials currently exist, this is one of the few high-performing ones that does not contain lead, making it an excellent candidate for use in machines, infrastructure as well as bio-medical applications.

Researchers have discovered how the “edge of chaos” can help electronic chips overcome signal losses, making chips simpler and more efficient.

By using a metallic wire on a semi-stable material, this method allows for long metal lines to act like superconductors and amplify signals, potentially transforming chip design by eliminating the need for transistor amplifiers and reducing power usage.

Revolutionizing chip design with the edge of chaos.

In their previous research, Mak and his colleagues engineered a highly tunable moiré Kondo lattice system based on MoTe2/WSe2 moiré bilayers. This material offers a unique opportunity to examine the Kondo destruction transition in a continuous manner, which has proved highly challenging in bulk heavy fermion materials.

“With this background, our Nature Physics paper studied the fate of the heavy fermions by continuously tuning the density of the itinerant carriers in the system, which tunes the effective Kondo coupling strength,” said Mak. “Near a critical density, we observed a destruction of the heavy fermions and the simultaneous emergence of a ferromagnetic Anderson insulator.”

As part of their new study, the researchers examined the Kondo lattice physics emerging in the moiré semiconductor: angle-aligned MoTe2/WSe2 heterobilayer presented in their previous paper. Their results highlight the promise of moiré Kondo lattices for studying the Kondo destruction transition using a tunable platform, as well as the possibility of realizing other exotic states of matter near such transition.

Optical anti-counterfeiting technology, as a preventive measure, has deeply permeated our daily lives. Visually readable codes designed based on optical materials are widely used due to their ease of verification, reasonable cost, and difficulty in replication. The rapid development of modern technology and the increasingly rampant activities of counterfeiting pose greater challenges to optical anti-counterfeiting technology. Consequently, optical anti-counterfeiting material systems based on multimodal integrated applications have garnered widespread attention.

Reservoir computing (RC) has a few benefits over other artificial neural networks, including the reservoir that gives this technique its name. The reservoir functions mainly to nonlinearly transform input data more quickly and efficiently. Spin waves, propagating wave-like disturbances arising from magnetic interactions, can traverse through a material. These excitations are driven by the spin of electrons.

How did life on Earth begin, and were the ingredients for life already on Earth or were they brought here from space? This is what a recent study published in Science Advances hopes to address as a team of researchers from Imperial College London and the University of Cambridge investigated how ancient meteorites could have deposited large amounts of zinc on Earth, resulting in the development of volatile elements to form the building blocks of life. This study holds the potential to help researchers better understand the conditions for life to have emerged on the Earth long ago, and potentially worlds throughout the solar system and beyond.

“One of the most fundamental questions on the origin of life is where the materials we need for life to evolve came from,” said Dr. Rayssa Martins, who is a postdoctoral research associate at the University of Cambridge and lead author of the study. “If we can understand how these materials came to be on Earth, it might give us clues to how life originated here, and how it might emerge elsewhere.”

For the study, the researchers analyzed zinc obtained from several meteorites to ascertain how the Earth got its zinc during its formation, which is estimated to have lasted tens of millions of years. In the end, the researchers estimate that while “melted” planetesimals contributed to approximately 70 percent of the Earth’s overall mass, they only contributed approximately 10 percent of the Earth’s zinc, which came from “unmelted” planetesimals. As noted, zinc contains volatile elements, which include oxygen, nitrogen, hydrogen, and carbon, or the essential building blocks of life as we know it. Along with helping researchers better understand how life formed and evolved on Earth, this could also lead to greater insight into how life might form and evolve on other worlds, as well.

Research on superconductivity has taken a significant leap with Princeton Universitys exploration of edge supercurrents in topological superconductors like molybdenum telluride.

Initially elusive, these supercurrents have been observed and enhanced through experiments with niobium, leading to intriguing phenomena such as stochastic switching and anti-hysteresis, altering the understanding of electron behavior in superconductors.

Superconductivity and Topological Materials.