Toggle light / dark theme

Scientists have revealed surprising parallels between aging and schizophrenia. There seem to be similar patterns of gene activity in the brains of people who are aging, and in those with schizophrenia. The same mechanisms may underlie the cognitive disruptions seen in older adults and people with schizophrenia. The findings have been reported in Nature.

In this work, the researchers analyzed gene expression at the single-cell level in post-mortem brain samples from 94 people with schizophrenia and 97 unaffected individuals. This gene activity was altered in two types of cells found in the brain, both neurons and astrocytes. In all, 1.2 million cells from were analyzed. This showed that in neurons, expression changed in genes that are associated with portions of synapses, the space where neurons meet and communicate; and in astrocytes, in genes that are related to synaptic function.

Researchers from the UoC’s Center for Biochemistry at the Faculty of Medicine and the UoC CECAD Cluster of Excellence in Aging Research have discovered that an excessive immune response can be prevented by the intramembrane protease RHBDL4.

In a study now published in Nature Communications under the title “RHBDL4-triggered downregulation of COPII adaptor protein TMED7 suppresses TLR4-mediated inflammatory signaling,” the previously unknown regulatory mechanism is described.

The researchers discovered that the cleavage of a cargo receptor by a so-called intramembrane reduces the localization of a central immune receptor on the and thereby the risk of an overreaction of the immune system.

The most popular words of 2023 were recently released, with AI Large Language Model (LLM) unquestionably topping the list. As a front-runner, ChatGPT also emerged as one of the international buzzwords of the year. These disruptive innovations in AI owe much to big data, which has played a pivotal role. Yet, AI has simultaneously presented new opportunities and challenges to the development of big data.

High-capacity data storage is indispensable in today’s digital economy. However, major storage devices like and semiconductor flash devices face limitations in terms of cost-effectiveness, durability, and longevity.

Optical data storage offers a promising green solution for cost-effective and long-term data storage. Nonetheless, optical data storage encounters a fundamental limitation in the spacing of adjacent recorded features, owing to the optical diffraction limit. This physical constraint not only impedes the further development of direct laser writing machines but also affects and storage technology.

Aging reversed in dogs face_with_colon_three


Age-related decline in mobility and cognition are associated with cellular senescence and NAD+ depletion in dogs and people. A combination of a novel NAD+ precursor and senolytic, LY-D6/2 was examined in this randomized controlled trial. Seventy dogs were enrolled and allocated into placebo, low or full dose groups. Primary outcomes were change in cognitive impairment measured with the owner-reported Canine Cognitive Dysfunction Rating (CCDR) scale and change in activity measured with physical activity monitors. Fifty-nine dogs completed evaluations at the three-month primary endpoint, and 51 reached the six-month secondary endpoint. There was a significant difference in CCDR score across treatment groups from baseline to the primary endpoint (p=0.02) with the largest decrease in the full dose group. There were no significant differences between groups in changes in measured activity. However, the proportion of dogs that improved in frailty and owner-reported activity levels and happiness was higher in the full dose group than other groups. Adverse events occurred equally across groups. All groups showed improvement in cognition, frailty, and activity suggesting placebo effect and benefits of trial participation. We conclude that LY-D6/2 significantly improves owner-assessed cognitive function and may have broader effects on frailty, activity and happiness as reported by owners.

The authors have declared no competing interest.