Toggle light / dark theme

http://www.sciencedaily.com/releases/2012/08/120823150403.htm

In a recent comment John Hunt mentioned the most probable solution to the Fermi Paradox and as more and more planets are discovered this solution becomes ever more troubling.

Whether civilizations are rare due to comet and asteroid impacts- as Ed Lu recently stated was a possibility- or they self-destruct due to technology, the greater danger is found in human complacency and greed. We have the ability right now, perhaps as hundreds or even thousands of other civilizations had, to defend ourselves from the external and internal threats to our survival. Somewhat like salmon swimming upstream, it may not be life itself that is rare- it may be intelligent life that survives for any length of time that is almost non-existent.

The answer is in space. The resources necessary to leave Earth and establish off world colonies are available- but there is no cheap. Space travel is inherently expensive. Yet we spend billions on geopolitical power games threatening other human beings with supersonic fighters and robot missile assassins. The technology to defend civilization as a whole from the plausible threat represented by this “Great Silence” will cost us no more than what we spend on expensive projects like vertical take-off stealth fighters and hyper-velocity naval rail guns. But it is not the easy money of weapons; it is the hard money of vehicles and systems that must work far from Earth that is unattractive to the corporate profit motive.

http://www.sciencedaily.com/releases/2012/08/120815131137.htm

One more step has been taken toward making whole body cryopreservation a practical reality. An understanding of the properties of water allows the temperature of the human body to be lowered without damaging cell structures.

Just as the microchip revolution was unforeseen the societal effects of suspending death have been overlooked completely.

The first successful procedure to freeze a human being and then revive that person without damage at a later date will be the most important single event in human history. When that person is revived he or she will awaken to a completely different world.

I am taking the advice of a reader of this blog and devoting part 2 to examples of old school and modern movies and the visionary science they portray.

Things to Come 1936 — Event Horizon 1997
Things to Come was a disappointment to Wells and Event Horizon was no less a disappointment to audiences. I found them both very interesting as a showcase for some technology and social challenges.… to come- but a little off the mark in regards to the exact technology and explicit social issues. In the final scene of Things to Come, Raymond Massey asks if mankind will choose the stars. What will we choose? I find this moment very powerful- perhaps the example; the most eloguent expression of the whole genre of science fiction. Event Horizon was a complete counterpoint; a horror movie set in space with a starship modeled after a gothic cathedral. Event Horizon had a rescue crew put in stasis for a high G several month journey to Neptune on a fusion powered spaceship. High accelleration and fusion brings H-bombs to mind, and though not portrayed, this propulsion system is in fact a most probable future. Fusion “engines” are old hat in sci-fi despite the near certainty the only places fusion will ever work as advertised are in a bomb or a star. The Event Horizon, haunted and consigned to hell, used a “gravity drive” to achieve star travel by “folding space.” Interestingly, a recent concept for a black hole powered starship is probably the most accurate forecast of the technology that will be used for interstellar travel in the next century. While ripping a hole in the fabric of space time may be strictly science fantasy, for the next thousand years at least, small singularity propulsion using Hawking radiation to achieve a high fraction of the speed of light is mathematically sound and the most obvious future.

https://lifeboat.com/blog/2012/09/only-one-star-drive-can-work-so-far

That is, if humanity avoids an outbreak of engineered pathogens or any one of several other threats to our existence in that time frame.

Greetings fellow travelers, please allow me to introduce myself; I’m Mike ‘Cyber Shaman’ Kawitzky, independent film maker and writer from Cape Town, South Africa, one of your media/art contributors/co-conspirators.

It’s a bit daunting posting to such an illustrious board, so let me try to imagine, with you; how to regard the present with nostalgia while looking look forward to the past, knowing that a millisecond away in the future exists thoughts to think; it’s the mode of neural text, reverse causality, non-locality and quantum entanglement, where the traveller is the journey into a world in transition; after 9/11, after the economic meltdown, after the oil spill, after the tsunami, after Fukushima, after 21st Century melancholia upholstered by anti-psychotic drugs help us forget ‘the good old days’; because it’s business as usual for the 1%; the rest continue downhill with no brakes. Can’t wait to see how it all works out.

Please excuse me, my time machine is waiting…
Post cyberpunk and into Transhumanism

The objective for the body and more specifically cells is to monitor its energy potential and well being just like we’d monitor anything else with a modern information system/information technology (IS/IT).

Apoptosis is an intentional death of a cell that triggers a “natural” death, Necrosis is an unintentional death of a cell due to damage. While there are some inherent dangers with existing and making it as difficult today to avoid necrosis as it was yesterday, we can aim to scientifically identify apoptosis and manage it. Most of us are familiar with apoptosis, we call it cancer…a phenomenon where cells don’t know when to call it quits and we suffer as a result of the growth.

The specific technology doesn’t exist yet, but we require a mechanism to measure and regulate mitochondrion decisions on-demand. Let’s get to work people! Is there a way that we could constantly monitor mitochondrial regulation without losing blood regularly like a the annoying finger prick monitoring that diabetics have to currently endure.

Some people say that a calorie restriction (CR) diet is difficult to follow. It used to be. But things have changed: Thanks to great work by leading scientists, current approaches to calorie restriction are just as much about cell signaling as about limiting calories.

It is known, for example, that serious long-term CR dramatically lowers insulin levels.1 Another hormone, with a similar molecular structure, insulin-like growth factor one (IGF-I), shares the same pathway with insulin and is downregulated by CR in animal studies and by calorie restricted humans who do not follow high protein diets.2

And there’s the rub. For if you hope to benefit from calorie restriction and do not pay attention to the special properties of macronutrient intake, individual foods, and food preparation, you may get an unpleasant surprise: excessive stimulation of the insulin/IGF-I pathway. For example, in a study using healthy volunteers, just 50 grams of white potato starch sends glucose and insulin soaring3 to levels associated with increased risk of cancer, heart disease and diabetes.4

Back in the 1930s, when the term calorie restriction was first applied to Dr. Clive McCay’s rat and mouse experiments,5 it was entirely appropriate because the focus was on calories since he was looking at growth retardation. Of course, little was known about the signals involved in the life-extending effects of the diet. All that changed as scientists discovered important cell-signaling patterns that produce the phenomenal life-transforming effects.6