Toggle light / dark theme

Senescent cell removal is the first true rejuvenation therapy to treat one of the aging processes and with human clinicial trials in the next 18 months these are some very exciting times. Here is yet another study showing natural compounds can be used in combination with drugs to kill senescent cells.


Today’s open access research paper outlines the discovery of yet another new candidate drug for the selective destruction of senescent cells. This is an increasingly popular research topic nowadays. Senescent cells perform a variety of functions, but on the whole they are bad news. Cells become senescent in response to stresses or reaching the Hayflick limit to replication. They cease further division and start to generate a potent mix of signals, the senescence-associated secretory phenotype or SASP, that can provoke inflammation, disarray the surrounding extracellular matrix structures, and change behavior of nearby cells for the worse. Then they destroy themselves, or are destroyed by the immune system — for the most part at least. This is helpful in wound healing, and in small doses helps to reduce cancer incidence by removing those cells most at risk of becoming cancerous. Unfortunately a growing number of these cells linger without being destroyed, more with every passing year, and their presence eventually causes significant dysfunction. That in turn produces age-related disease, frailty, and eventually death. Senescent cells are not the only root cause of aging, but they provide a significant contribution to the downward spiral of health and wellbeing, and even only their own would eventually produce death by aging.

The beneficial aspects of senescent cells seem to require only a transient presence, so the most direct approach to the problem presented by these cells is to destroy them every so often. Build a targeted therapy capable of sweeping senenscent cells from tissues, and make it efficient enough to keep the count of such cells low. That is the way to prevent senescent cells form contributing to age-related disease. Working in mice, researchers have produced results such as functional rejuvenation in aged lungs and extended life span through the targeted destruction of senescent cells. Since perhaps only a few percent of the cells in old tissue are senescent, this targeted destruction can be accomplished with few side-effects beyond those generated by off-target effects of the medication itself.

Read more

Stanford University’s amazing new regenerative medicine facility where the impossible is becoming possible.


The 25,000-square-foot facility, which opened last September, puts Stanford at the forefront of one of medicine’s most important and promising trends: regenerative medicine, which aims to refurbish diseased or damaged tissue using the body’s own healthy cells.

“We’re curing the incurable,” said laboratory director David DiGiusto, who holds a doctorate.

Critics complain that no one makes anything in Silicon Valley anymore except mobile apps and plug-in cars, a decades-long gripe that dates back to the shuttering of chip fabrication plants.

Decline of the immune system is one of the areas SENS are working on, with just over a week left for the Winter Fundraiser and Triple donation match now is the time to support their work!


Immunosenescence is a key process in aging and rejuvention or replacement of the thymus which gradually wastes away as we age exposing us to pathogens is an important step in dealing with age-related diseases. SENS is working on these problems so if you want to see solutions please consider donating to our Winter Fundraiser today on the link below:

Donate

“As we age and are exposed to persistent pathogens, especially cytomegalovirus, ever more of the T cell population becomes specialized in ways that remove the ability to deal with new threats. A flood of new immune cells would help to restore the balance, and in recent years researchers have demonstrated that transplanting a young and active thymus into an old mouse does in fact restore measures of immune function, and extends life span as well.”

Google Tech Talk with the SENS Research Foundation!


Commentary about our recent Google Tech Talk about the MitoSENS project from FightAging!

“As the clock ticks on this year’s SENS rejuvenation research fundraiser — less than two weeks to go now, and plenty left in the matching fund for new donations — it is good to be reminded of the progress that the SENS Research Foundation has accomplished with the charitable funding of recent years. With that in mind, today I’ll point you to a recent Google Tech Talk that provides a layperson’s introduction to one of the projects that our community has funded, fixing the problem of mitochondrial damage in aging. The point of the SENS (Strategies for Engineered Negligible Senescence) research programs is to accelerate progress towards specific forms of therapy that can bring aging under medical control.”

Read more

This cartoon depicts turning back the aging clock through cellular regeneration of progeria mice (credit: Juan Carlos Izpisua Belmonte Lab/Salk Institute)

Salk Institute scientists have extended the average lifespan of live mice by 30 percent, according to a study published December 15 in Cell. They did that by rolling back the “aging clock” to younger years, using cellular reprogramming.

The finding suggests that aging is reversible by winding back an animal’s biological clock to a more youthful state and that lifespan can be extended. While the research does not yet apply directly to humans, it promises to lead to improved understanding of human aging and the possibility of rejuvenating human tissues.

Read more

Tissue engineering and Stem cells are a large part of the rejuvenation biotechnology toolkit. Here we have yet more progress and this time the pacemaker cells are replicated for possible use in biological pacemaker therapies.

“Scientists from the McEwen Centre for Regenerative Medicine, University Health Network, have developed the first functional pacemaker cells from human stem cells, paving the way for alternate, biological pacemaker therapy.”

Read more

A 14-year-old girl who said before dying of cancer that she wanted a chance to live longer has been allowed by the high court to have her body cryogenically frozen in the hope that she can be brought back to life at a later time.

The court ruled that the teenager’s mother, who supported the girl’s wish to be cryogenically preserved, should be the only person allowed to make decisions about the disposal of her body. Her estranged father had initially opposed her wishes.

During the last months of her life, the teenager, who had a rare form of cancer, used the internet to investigate cryonics. Known only as JS, she sent a letter to the court: “I have been asked to explain why I want this unusual thing done. I’m only 14 years old and I don’t want to die, but I know I am going to. I think being cryo‐preserved gives me a chance to be cured and woken up, even in hundreds of years’ time.

Read more