Billions of dollars are being invested into research on aging, with promising early results. What if immortality were possible?

Robin looks like an ordinary twelve year old girl. She is about to run a mile for gym class and expects to do well. She comes in dead last, gasping for air by the end. Fast forward one year: her hair is graying, her skin bruises easily, and she suffers from chronic fatigue. Robin, now in her thirties, is completely gray.
Robin has a rare condition that prematurely shortens telomeres. Her father had the same condition. Before passing away at forty three, both of his hips had been replaced due to bone and muscle loss. What’s happening to Robin is happening to all of us, just at a slower pace.
In 1961 Leonard Hayflick found fetal cells would divide a finite number of times. This overturned the long-held (and now ridiculous sounding) belief that all cells are immortal. The maximum number of divisions allotted to them could not be altered by his best efforts.
There are lots of exciting companies working in the aging field, and it’s a great time to tell you about some of the more interesting ones. Most of these companies are a while away from human trials yet, but their innovations could possibly be truly game changing.
Underdog Pharmaceuticals is a spin-off company of SENS Research Foundation and is developing a novel approach to treating atherosclerosis.
Atherosclerosis is the number one killer worldwide, and it currently has no totally effective solution. There are three ways in which current medicine tries to address it: Lifestyle changes, including diet and exercise; drugs that slow down the rate of cholesterol accumulation; and interventions such as stents and bypass surgery.
Chip Walter’s new book is titled “Immortality Inc.: Renegade Science, Silicon Valley Billions and the Quest to Live Forever.” It’s about the money, and the research, that’s seeking a way to extend human life indefinitely.
Chip Walter discusses “Immortality, Inc.” at Pittsburgh Arts & Lectures: 6 p.m. Thu., Jan. 16. Carnegie Library of Pittsburgh Main Branch, 4400 Forbes Ave., Oakland.
Sounds like science fiction, but Walter thinks breakthroughs are just around the corner.
What the reasons underlying these impairments are is yet unclear but scientists at the Center for Regenerative Therapies of TU Dresden (CRTD) wanted to investigate if increasing the number of stem cells in the brain would help in recovering cognitive functions, such as learning and memory, that are lost during ageing.”
https://tu-dresden.de/tu-dresden/newsportal/news/verjuengung…en-maeusen
For the latest news on neuroscience, psychology, and artificial intelligence please like and follow our Facebook page:
https://www.facebook.com/383136302314720/posts/508764083085274/
Ein jeder wird es irgendwann erleben: Je älter wir werden, desto schwieriger wird es für unser Gehirn, neue Dinge zu lernen und sich an sie zu erinnern. Die Gründe hinter diesen Beeinträchtigungen sind oft unklar. Nun haben Wissenschaftler des Zentrums für Regenerative Therapien der TU Dresden (CRTD) untersucht, ob eine Erhöhung der Anzahl von Hirnstammzellen helfen würde, kognitive Funktionen wie Lernen und Gedächtnis wiederzuerlangen, die im Laufe des Alterns verloren gehen.
Die Forschungsgruppe von Prof. Federico Calegari hat dazu eine im eigenen Labor entwickelte Methode verwendet: Im Gehirn alter Mäuse stimulierten die Wissenschaftler den dort vorhandenen kleinen Pool neuronaler Stammzellen so, dass sich die Menge dieser Stammzellen und damit auch die Anzahl der aus ihnen erzeugten Gehirnzellen erhöhte. Das Team beobachtete, dass diese zusätzlichen Neuronen überleben und sogar neue Kontakte zu benachbarten Zellen knüpfen können. In einem nächsten Schritt untersuchten die Wissenschaftler eine wichtige Aufgabe des Gehirns, die ähnlich wie bei der Maus auch beim Menschen im Laufe des Alterns verloren geht: die Navigationsfähigkeit.
Guardian of the Amazon! — Come hear the recent ideaXme (http://radioideaxme.com/) episode where we are joined by Ms. Nemonte Nenquimo, President of the Waorani Pastaza Organization, CONCONAWEP (Coordinating Council of the Waorani Nationality of Ecuador), following their recent landmark legal victory against the Ecuadorian government, leading to 500,000 acres of Amazon rainforest protected from oil drilling and timber companies (English voice over — Spanish audio link to be posted soon) — #Ideaxme #Amazon #Rainforest #Jungle #Ecuador #Waorani #Huaorani #Amerindian #Environment #Trees #Herbal #EthnoMedicine #Sustainability #Ayahuasca #ClimateChange #GretaThunberg #Health #Wellness #Longevity #Aging #IraPastor #Bioquark #Regenerage
Ira Pastor, ideaXme exponential health ambassador, interviews Ms. Nemonte Nenquimo, President of the Waorani Pastaza Organization (CONCONAWEP — Coordinating Council of the Waorani Nationality of Ecuador). This is an English language voice over of Ms Nenquimo’s audio interview.
Ira comments:
Today we have a fascinating guest joining us on the ideaXme show from a rather remote location, to discuss ethnomedicine, environmental conservation and protection, entheogens (the topic of bio-active plant substances for spiritual and religious practices), as well as the themes of bravery and perseverance.
Who Are the Waorani?
Findings from a recent research project, conducted by a Marshall University scientist and assistant professor in the Marshall University College of Science, with researchers in Texas, was recently published in the December issue of the prestigious online journal, Nature Communications.
Dr. Eugene Shakirov is studying the connection between ribosomes and telomeres in plants. Telomeres are the physical ends of chromosomes and they shorten with age in most cells. Accelerated shortening of telomeres is linked to age-related diseases and overly long telomeres are often linked to cancer.
Telomere length varies between individuals at birth and is known to predetermine cellular lifespan, but the genes establishing telomere length variations are largely unknown. The research being done by Shakirov, along with collaborators at the University of Texas at Austin, Texas A&M University, HudsonAlpha Institute for Biology and the Kazan Federal University in Russia focused on the study of the genetic and epigenetic causes of natural telomere length variation in Arabidopsis thaliana, a small flowering plant.
Scientists at the MDI Biological Laboratory, in collaboration with scientists from the Buck Institute for Research on Aging in Novato, Calif., and Nanjing University in China, have identified synergistic cellular pathways for longevity that amplify lifespan fivefold in C. elegans, a nematode worm used as a model in aging research.
The increase in lifespan would be the equivalent of a human living for 400 or 500 years, according to one of the scientists.
The research draws on the discovery of two major pathways governing aging in C. elegans, which is a popular model in aging research because it shares many of its genes with humans and because its short lifespan of only three to four weeks allows scientists to quickly assess the effects of genetic and environmental interventions to extend healthy lifespan.
Seeking Delphi podcast host Mark Sackler is joined by panelists Liz Parrish, Aubrey de Grey, David Wood and co-moderator Keith Comito to discuss scenarios for getting to—and dealing with—a post aging future.