Toggle light / dark theme

In 2,001 Celera Genomics and the International Human Genome Sequencing Consortium published their initial drafts of the human genome, which revolutionized the field of genomics. While these drafts and the updates that followed effectively covered the euchromatic fraction of the genome, the heterochromatin and many other complex regions were left unfinished or erroneous. Addressing this remaining 8% of the genome, the Telomere-to-Telomere (T2T) Consortium has finished the first truly complete 3.055 billion base pair (bp) sequence of a human genome, representing the largest improvement to the human reference genome since its initial release. The new T2T-CHM13 reference includes gapless assemblies for all 22 autosomes plus Chromosome X, corrects numerous errors, and introduces nearly 200 million bp of novel sequence containing 2,226 paralogous gene copies, 115 of which are predicted to be protein coding. The newly completed regions include all centromeric satellite arrays and the short arms of all five acrocentric chromosomes, unlocking these complex regions of the genome to variational and functional studies for the first time.

The latest major update to the human reference genome was released by the Genome Reference Consortium (GRC) in2013and most recently patched in2019(GRCh38.p13). This assembly traces its origin to the publicly funded Human Genome Project and has been continually improved over the past two decades. Unlike the competing Celera assembly , and most modern genome projects that are also based on shotgun sequence assembly , the GRC human reference assembly is primarily based on Sanger sequencing data derived from bacterial artificial chromosome (BAC) clones that were ordered and oriented along the genome via radiation hybrid, genetic linkage, and fingerprint maps. This laborious approach resulted in what remains one of the most continuous and accurate reference genomes today. However, reliance on these technologies limited the assembly to only the euchromatic regions of the genome that could be reliably cloned into BACs, mapped, and assembled.

It’s his personal mission to make it to 200.


Sergey Young has made it his personal mission to live to 200. Seriously: The longevity expert, founder of the Longevity Vision Fund, and author of The Science and Technology of Growing Young, has dedicated his entire career to helping at least 1 billion people live long, healthy lives—and make these technological advances affordable and accessible for all.

Through his work, he has identified what he calls lifestyle “longevity buckets” to increase your lifespan and healthspan (because who wants to live to 200 with a low quality of life?). “By implementing them, we can add 10 20 healthy and happy years to our life,” he says on this episode of the mindbodygreen podcast. “We can easily live 200 years.”

Nad plus works for alzheimers.


In June of 2,018 the World Health Organization (WHO) released the 11th edition of its International Classification of Diseases, and for the first time added aging. The classification of aging as a disease paves the way for new research into novel therapeutics to delay or reverse age-related illnesses such as cancer, cardiovascular and metabolic disease, and neurodegeneration., Nutrient sensing systems have been an intense focus of investigation, including mTOR (the mammalian target of rapamycin) for regulating protein synthesis and cell growth; AMPK (activated protein kinase) for sensing low energy states; and sirtuins, a family of seven proteins critical to DNA expression and aging, which can only function in conjunction with NAD+ (nicotinamide adenine dinucleotide), a coenzyme present in all living cells.

Across the kingdom of life, an increase in intracellular levels of NAD+ triggers shifts that enhance survival, including boosting energy production and upregulating cellular repair. In fact, the slow, ineluctable process of aging has been described as a “cascade of robustness breakdown triggered by a decrease in systemic NAD+ biosynthesis and the resultant functional defects in susceptible organs and tissues.” Aging is marked by epigenetic shifts, genomic instability, altered nutrient sensing ability, telomere attrition, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and dysregulated intercellular communication.,

By middle age, our NAD+ levels have plummeted to half that of our youth. Numerous studies have demonstrated that boosting NAD+ levels increases insulin sensitivity, reverses mitochondrial dysfunction, and extends lifespan., NAD+ levels can be increased by activating enzymes that stimulate synthesis of NAD+, by inhibiting an enzyme (CD38) that degrades NAD+, and by supplementing with NAD precursors, including nicotinamide riboside(NR) and nicotinamide mononucleotide (NMN)., A conceptual framework called NAD World, formulated over the last decade by developmental biologist Shin-ichiro Imai, MD, PhD, of Washington University School of Medicine, posits NMN as a critical, systemic signaling molecule that maintains biological robustness of the communication network supporting NAD+..

Are there vertebrates occupying the planet today whose lifespans extend back to before the founding of the United States? Based on recent research, it seems very likely — and they exist in the form of sharks whose fermented meat are used in a very distinctive Icelandic dish. Scientists have found evidence that Greenland sharks live for hundreds of years — and that there are some whose lifespans extend to 400 or even 500 years.

For some scientists, the lengthy lifespans of certain creatures can also have an impact on research into making humans live longer. That’s true for the immortal jellyfish, and it also applies to the Greenland shark. A recent article by Jonathan Moens at Atlas Obscura explores what scientists have learned from their studies of the long-lived sharks — and what it might mean for humanity.

Greenland sharks’ longevity could be chalked up to genetic or lifestyle factors, or some combination of the two. The University of Manchester’s Holly Shiels suggested that, as Moens writes, “Greenland sharks may have a uniquely sophisticated system to repair damaged DNA.” Other scientists point to the sharks’ habitat — cold Arctic waters — and their ability to live for a long period of time on a relatively small amount of food as signs of a very efficient metabolism.

A new book, published this week, explains where aging research is heading – and what you can do today to extend your healthspan. https://www.futuretimeline.net/.…/28-the-science-and…


Editorial reviews.

“A very compelling book.” —Ray Kurzweil, inventor and futurist.

“Being alive and healthy is the greatest joy that exists, and there has never been a better time to be alive than today. This book is going to open your mind to just how real and close-at-hand the ambition of defeating death is!” —Peter Diamandis, founder of the XPRIZE Foundation.

While it is always proper to treat the idea of “inevitability” or the promise of utopia with skepticism, it would also be irresponsible to ignore what is fast becoming an undeniable trend. From all outward appearances, technological change is an anthropogenic trend subject to acceleration, and the speed at which changes are coming is reaching a critical point.


Reality check

Of course, there is no shortage of naysayers, skeptics, and doubters regarding the Technological Singularity and similar predictions. In one camp, you have those who cite past claims such as flying cars, floating cities, and other futuristic visions that were predicted to come true by the 21st century.

In the fictional links he drew between immortal vampires and bats, Dracula creator Bram Stoker may have had one thing right.

“Maybe it’s all in the blood,” says Emma Teeling, a geneticist studying the exceptional longevity of bats in the hope of discovering benefits for humans.

The University College Dublin researcher works with the charity Bretagne Vivante to study bats living in rural churches and schools in Brittany, western France.

Studying Novel Plasma Fractions For Age-Related Diseases And Systemic Rejuvenation — Dr. Harold Katcher Ph.D., Chief Scientific Officer, Yuvan Research Inc.


Dr. Harold Katcher is the Chief Scientific Officer at Yuvan Research Inc., a biotech company exploring the development of novel, young plasma fraction rejuvenation treatments in mammals.

Most recently Dr. Katcher was the Academic Director for Natural Sciences for the Asian Division of the University of Maryland Global Campus and throughout his career, Dr. Katcher has been a pioneer in the field of cancer research, and in the development of modern aspects of gene hunting and sequencing (including as one of the discoverers of the breast cancer gene BRCA1) as part of Myriad Genetics, and carries expertise in bioinformatics, chronobiology, and biotechnology.

Secretome Derived Regenerative Therapeutics — Dr. Hanadie Yousef Ph.D., Co-Founder & CEO, Juvena Therapeutics


Dr. Hanadie Yousef, Ph.D. is a Scientist, Co-Founder and CEO of Juvena Therapeutics (https://www.juvenatherapeutics.com/), a regenerative medicine company developing protein therapeutics to promote tissue regeneration and increase healthspan, to prevent, reverse, and cure degenerative diseases.

For over 17 years, Dr. Yousef elucidated mechanisms of aging and developed methods for tissue regeneration supported by multiple awards, fellowships and grants. Her discoveries were published in top publications that include Nature Medicine and led to several issued patents which laid the foundation of Juvena Therapeutics’ venture-backed, drug discovery and pre-clinical development platform.