Toggle light / dark theme

One of the especially promising therapies to appear in the realm of anti-aging research involves a set of molecules known as Yamanaka factors, which scientists have deployed to rejuvenate aging cells, trigger muscle regeneration and tackle glaucoma. New research at the Salk Institute has sought to build on these short-term and specific use cases by demonstrating how these molecules can reverse signs of aging in middle-aged and elderly mice, with no evidence of health problems following the extended treatment.

The Yamanaka factors at the center of this study are a set of four reprogramming molecules that can reset the molecular clock found in the cells of the body. They do so by returning unique patterns of chemicals known as epigenetic markers, which evolve through aging, to their original states.

This approach has been used to convert adult cells back into stem cells, that can then differentiate into different cell types. The Salk Institute team has previously used the approach to reverse signs of aging in mice with a premature aging disease, and improve the function of tissues found in the heart and brain. Separately, Stanford University scientists last year used the technique to give elderly mice the muscle strength of younger mice.

One group of mice received regular doses of the Yamanaka factors from the time they were 15 months old until 22 months, approximately equivalent to age 50 through 70 in humans. Another group was treated from 12 through 22 months, approximately age 35 to 70 in humans. And a third group was treated for just one month at age 25 months, similar to age 80 in humans.


LA JOLLA—(March 7, 2022) Age may be just a number, but it’s a number that often carries unwanted side effects, from brittle bones and weaker muscles to increased risks of cardiovascular disease and cancer. Now, scientists at the Salk Institute, in collaboration with Genentech, a member of the Roche group, have shown that they can safely and effectively reverse the aging process in middle-aged and elderly mice by partially resetting their cells to more youthful states.

“We are elated that we can use this approach across the life span to slow down aging in normal animals. The technique is both safe and effective in mice,” says Juan Carlos Izpisua Belmonte, co-corresponding author and a professor in Salk’s Gene Expression Laboratory. “In addition to tackling age-related diseases, this approach may provide the biomedical community with a new tool to restore tissue and organismal health by improving cell function and resilience in different disease situations, such as neurodegenerative diseases.”

(Part II) Centenarian Blood Test Analysis (n=1,754)


Join us on Patreon!
https://www.patreon.com/MichaelLustgartenPhD

Papers referenced in the video:
Risk Factors For Hyperuricemia In Chinese Centenarians And Near-Centenarians.
https://pubmed.ncbi.nlm.nih.gov/31908434/

Total cholesterol and all-cause mortality by sex and age: a prospective cohort study among 12.8 million adults.
https://pubmed.ncbi.nlm.nih.gov/30733566/

Association between low-density lipoprotein cholesterol and cardiovascular mortality in statin nonusers: a prospective cohort study in 14.9 million Korean adults.

Summary: 3,6’-dithiopomalidomide (DP), an anti-inflammatory drug candidate, protected mouse models of Alzheimer’s disease against cognitive decline by reducing neuroinflammation.

Source: NIH

An anti-inflammatory drug candidate, known as 3,6’-dithiopomalidomide (DP), designed by researchers at the National Institute on Aging (NIA), protected lab mice against cognitive decline by reducing brain inflammation.

Have not heard from Dr West in awhile. Two things stood out in this technical hour: Telomerase in gene therapy has never been properly developed, and their iTR technology has not had animal trials as they wait for funding.


In this #webinar, Dr Michael West, a bioentrepreneur and CEO of AgeX Therapeutics, discussed the work of AgeX Therapeutics, their mission and plan to extend human health and longevity, and exciting new #technologies that could combat #ageing and unlock cellular immortality.

Register for upcoming #HealthyLongevity #webinar sessions at https://nus-sg.zoom.us/webinar/register/3016397215018/WN__sypkX6ZSomc7cGAkK3LbA
#NUSMedicine #webinarseries

References:
- Closing video source: https://www.youtube.com/watch?v=yoJ6LRCkNb0

Disclaimer: The opinions and advice expressed in this webinar are those of the speakers and do not represent the views and opinions of the organizers and National University of Singapore or any of its subsidiaries or affiliates. The information provided in this webinar is for general information purposes only as part of a general discussion on public health. The information is not intended to be a substitute for professional medical advice, diagnoses or treatment; and cannot be relied on in place of consultation with your licensed healthcare provider.

In this video Bill Andrews summarizes in 19 minutes his extensive research on telomeres, aging, and his proposal to cure aging. Bill Andrews is an American molecular biologist and gerontologist, founder and CEO of the biotech company Sierra Sciences.


Bill Andrews summarizes in 19 minutes his extensive and prolific research on telomeres, aging, and the cure for aging.

The video, originally released by Bill Andrews in february 2022, among other things, covers in little less than 20 minutes the following:

1) Enlightening info about telomere shortening and its impact on aging.

2) Practical proposals to cure aging based on two different approaches to stop telomere shortening and actually enlarge them.

Progress, Potential, And Possibilities has had another busy month! — Come subscribe & enjoy all of our fascinating guest who are creating a better tomorrow! #Health #Longevity #Biotech #Space #AI #Technology #Medicine #Entertainment #Energy #Regeneration #Environment #Sustainability #Food #Innovation #Future #Defense #STEM #Aging #IraPastor


Interviews and Discussions With Fascinating People Who are Creating A Better Tomorrow For All Of Us — Host — Ira S. Pastor.

The amniotic membrane (Amnio-M) has various applications in regenerative medicine. It acts as a highly biocompatible natural scaffold and as a source of several types of stem cells and potent growth factors. It also serves as an effective nano-reservoir for drug delivery, thanks to its high entrapment properties. Over the past century, the use of the Amnio-M in the clinic has evolved from a simple sheet for topical applications for skin and corneal repair into more advanced forms, such as micronized dehydrated membrane, amniotic cytokine extract, and solubilized powder injections to regenerate muscles, cartilage, and tendons. This review highlights the development of the Amnio-M over the years and the implication of new and emerging nanotechnology to support expanding its use for tissue engineering and clinical applications. Graphical Abstract.

BILLIONAIRE Mark Zuckerberg has revealed his thoughts on life and death in a recent podcast.

The Facebook founder and Meta Platforms CEO has plans to cure all diseases this century but has no desire to live forever.

Zuckerberg hasn’t had an ordinary life.

He founded Facebook when he was just 19 years old and became the youngest billionaire at just 23.