Toggle light / dark theme

Aging — what it is and how to measure it

The current understanding of the biology of aging is largely based on research aimed at identifying factors that influence lifespan. However, lifespan as a sole proxy measure of aging has limitations because it can be influenced by specific pathologies (not generalized physiological deterioration in old age). Hence, there is a great need to discuss and design experimental approaches that are well-suited for studies targeting the biology of aging, rather than the biology of specific pathologies that restrict the lifespan of a given species. For this purpose, we here review various perspectives on aging, discuss agreement and disagreement among researchers on the definition of aging, and show that while slightly different aspects are emphasized, a widely accepted feature, shared across many definitions, is that aging is accompanied by phenotypic changes that occur in a population over the course of an average lifespan. We then discuss experimental approaches that are in line with these considerations, including multidimensional analytical frameworks as well as designs that facilitate the proper assessment of intervention effects on aging rate. The proposed framework can guide discovery approaches to aging mechanisms in all key model organisms (e.g., mouse, fish models, D. melanogaster, C. elegans) as well as in humans.

Keywords: Aging; experimental design; lifespan; models; phenotypes.

Copyright © 2023 Elsevier B.V. All rights reserved.

Study shows exercise can ‘fight off’ diabetes risk

Type 2 diabetes is a significant global health concern, affecting millions of individuals worldwide. The disease is associated with numerous complications, as well as an increased risk of premature mortality. Recent research conducted by the University of Sydney has shed light on the potential of physical activity in preventing the onset of type 2 diabetes, even in individuals with a high genetic risk for the disease [1]. This study underscores the importance of exercise as a key strategy for chronic disease prevention and offers promising news for individuals seeking to reduce their risk of developing type 2 diabetes.

Longevity. Technology: The worldwide burden of type 2 diabetes is substantial, and the disease carries significant implications for public health. Type 2 diabetes is associated with various complications, including cardiovascular diseases, kidney problems and nerve damage. Moreover, individuals with type 2 diabetes often experience a shortened lifespan and reduced healthspan due to the increased risk of developing other chronic conditions. The study’s findings add to the clarion call for effective prevention strategies that alleviate this burden on individuals, families and healthcare systems worldwide.

The research, published in the British Journal of Sports Medicine, involved 59,325 adults enrolled in the UK Biobank project. Participants wore accelerometers on their wrists to measure their physical activity levels and the researchers also considered genetic markers associated with a higher risk of type 2 diabetes. The study followed the participants for up to seven years to assess their health outcomes.

Unlocking the fountain of youth: Diet and exercise have a remarkable impact on cognition in older adults

The aim of non-pharmacologic interventions for brain health is to preserve cognitive function and safeguard brain structure. This review explores various diets (MeDi, DASH, MIND, ketogenic), exercise approaches (endurance, resistance, yoga, HIIT), and highlights the need for further research to uncover the underlying mechanisms.

New neuroscience research sheds light on why anxiety tends to diminish with age

As people get older, they tend to have lower levels of anxiety. But why? A new brain imaging study has found that older individuals are faster at recognizing and responding to negative emotions. The findings, published NeuroImage, go against the idea that older adults are less engaged with negative emotions due to cognitive decline or that they are better at regulating negative emotions. Instead, the results suggest that older adults may develop a more automatic way of processing negative emotions.

The study aimed to investigate the relationship between aging, trait anxiety, and changes in cognitive and affective functions. The researchers were motivated by previous findings that older adults tend to have lower susceptibility to anxiety disorders compared to younger and middle-aged adults. However, it was not clear how age-related changes in anxiety symptoms, such as worry and somatic symptoms, were related to changes in cognitive and affective processes.

“We are interested in emotion dysfunction in early dementia, including those people with subjective complaints of memory problem and mild cognitive impairment,” said study author Chiang-shan Ray Li, a professor of psychiatry and neuroscience at Yale University School of Medicine.

Eliminating Death Doesn’t Mean Life Will Get Boring

In my new Newsweek Op-Ed, I tackle a primary issue many people have with trying to stop aging and death via science. Hopefully this philosophical argument will allow more resources & support into the life extension field:


Philosophers often say if humans didn’t die, we’d be bored out of our minds. This idea, called temporal scarcity, argues the finitude of death is what makes life worth living. Transhumanists, whose most urgent goal is to use science to overcome biological death, emphatically disagree.

For decades, the question of temporal scarcity has been debated and analyzed in essays and books. But an original idea transhumanists are putting forth is reinvigorating the debate. It doesn’t discount temporal scarcity in biological humans; it discounts it in what humans will likely become in the future—cyborgs and digitized consciousnesses.

The traditional temporal scarcity argument against immortality imagines the human being remaining biologically the same as it has for tens of thousands of years. Yet the human race is already augmenting the human body with radical technology. Globally, over 200,000 people already have brain implants, and Silicon Valley companies like Elon Musk’s Neuralink are working on trying to get millions of us to become cyborgs.

A growing number of experts even believe by the end of the century, humans will likely have the ability to upload the brain and its consciousness into a computer. In the process, digitized people will overcome biological death and engage in far more complex ways of being, including grand new designs of consciousness and selfhood.

Video Game Algorithm Unlocks Molecular Mysteries of Brain Cells

Summary: Researchers leveraged a tracking algorithm from video games to study molecules’ behavior within live brain cells.

They adapted the fast and accurate algorithm used to track bullets in combat games for use in super-resolution microscopy. The innovative approach enables scientists to observe how molecules cluster together to perform specific functions in space and time within the brain cells.

The data obtained could shed light on molecular functions’ disruption during aging and disease.

Dr Brandon Berry, PhD — Exploring Mitochondrial Bioenergetics, Optogenetics, Human Health And Aging

Exploring Mitochondrial Bioenergetics, Optogenetics, Human Health And Aging — Dr. Brandon Berry, Ph.D., University of Washington.


Dr. Brandon Berry, Ph.D. (https://halo.dlmp.uw.edu/people/brandon-berry/) is a postdoctoral researcher in the Kaeberlein Laboratory at University of Washington where his research focuses on how aging and metabolism are linked.

Dr. Berry is interested in how mitochondria, the powerhouses of cells, contribute to and modulate functional decline that occurs during aging, and he is involved in using novel tools, like optogenetics, to precisely control mitochondria and metabolism with light. Through these types of experiments, he can more precisely determine if mitochondrial dysfunction is a cause or a consequence of metabolic aging and may reveal new ways to understand and impact health.

Dr. Berry has BS in Biochemistry from SUNY Geneseo, and an MS and PhD in Physiology from University of Rochester.

Boosting One Amino Acid Might Be The Secret to Longer Lifespans

Scientists have discovered not only that animals age more quickly when they don’t have enough of the amino acid taurine in the body, but that oral taurine supplements can delay aging and increase a healthy lifespan.

An international team of researchers found that taurine supplements delayed aging in worms, mice, and monkeys, and increased the healthy lifespan of middle-aged mice by up to 12 percent.

“For the last 25 years, scientists have been trying to find factors that not only let us live longer, but also increase health span, the time we remain healthy in our old age,” says biologist Vijay Yadav from Columbia University, senior author on the study.

/* */