Toggle light / dark theme

A breakthrough map reveals how the brain really works

Scientists have shown that brain connectivity patterns can predict mental functions across the entire brain. Each region has a unique “connectivity fingerprint” tied to its role in cognition, from language to memory. The strongest links were found in higher-level thinking skills that take years to develop. This work lays the groundwork for comparing healthy and disordered brains.

Plasma lens can focus attosecond pulses across different ranges of XUV light

A team of researchers from the Max Born Institute (MBI) in Berlin and DESY in Hamburg has demonstrated a plasma lens capable of focusing attosecond pulses. This breakthrough substantially increases the attosecond power available for experiments, opening up new opportunities for studying ultrafast electron dynamics. The results have now been published in Nature Photonics.

Attosecond pulses—bursts of light lasting only billionths of a billionth of a second—are essential tools for observing and controlling electronic motion in atoms, molecules, and solids. However, focusing these pulses, which lie in the extreme-ultraviolet (XUV) or X-ray region of the electromagnetic spectrum, has proven highly challenging due to the lack of suitable optics.

Mirrors are commonly used, but they offer low reflectivity and degrade quickly. Lenses, though the most straightforward tool for focusing , are not suitable for focusing attosecond pulses, because they absorb the XUV light and stretch the attosecond pulses in time.

Infrared sensors gain sensitivity with ultra-thin lens for fire and threat monitoring

Researchers have developed a highly sensitive method for detecting hotspots in the environment, such as bushfires or military threats, by harnessing the focusing power of meta-optical systems.

The key to the approach is innovative lens technology thinner than a , which can collect and process from fires and other heat sources with much improved efficiency. Crucially, it does not need cryogenic cooling, unlike current sensors.

The result is that promises to enhance devices in both the civilian and military spheres, said Dr. Tuomas Haggren, lead researcher on the project.

AI Is Overheating. This New Technology Could Be the Fix

Engineers have developed a passive evaporative cooling membrane that dramatically improves heat removal for electronics and data centers Engineers at the University of California San Diego have created an innovative cooling system designed to greatly enhance the energy efficiency of data centers

PEGATRON Chooses Georgetown, Texas for First U.S. Manufacturing Facility

PEGATRON’s arrival marks a turning point not only for Georgetown, but for the broader Central Texas innovation corridor. The Taiwan-based technology giant, known for designing and manufacturing everything from laptops to automotive electronics, already plays a quiet but massive role in powering many of the world’s best-known tech brands.

According to PEGATRON Corporation, their focus on smart manufacturing and artificial intelligence solutions has made them one of the world’s top players in electronics and computing systems.

When Hello Georgetown first reported PEGATRON’s interest in a U.S. facility earlier this year, the discussion centered on shifting global supply chains and the growing desire to bring advanced production closer to U.S. customers. That conversation has now become reality.

Neural implant smaller than a grain of salt can wirelessly track brain

Cornell University researchers and collaborators have developed a neural implant so small that it can rest on a grain of salt, yet it can wirelessly transmit brain activity data in a living animal for more than a year.

The breakthrough, detailed Nov. 3 in Nature Electronics, demonstrates that microelectronic systems can function at an unprecedentedly small scale, opening new possibilities for neural monitoring, bio-integrated sensing and other applications.

Development of the device, called a microscale optoelectronic tetherless electrode, or MOTE, was co-led by Alyosha Molnar, professor in the school of electrical and , and Sunwoo Lee, an assistant professor at Nanyang Technological University who first began working on the technology as a postdoctoral associate in Molnar’s lab.

New Artificial Neurons Physically Replicate the Brain

A breakthrough in neuromorphic computing could lower the energy consumption of chips and accelerate progress toward artificial general intelligence (AGI). Researchers from the USC Viterbi School of Engineering and the School of Advanced Computing have created artificial neurons that closely mimic

Innovative Treatment Regrows 90% of Lost Hair

Hair loss affects millions of people worldwide. Although treatments do exist, these solutions are costly and not always effective. Looking for a more lasting and effective solution, scientists have turned their attention to understanding the molecular mechanisms that regulate hair growth, leading to a new frontier in hair regeneration: dermal exosomes.

Advanced imaging reveals how electrocatalysts simultaneously generate hydrogen and organic compounds

Hybrid water electrolysers are recent devices, which produce hydrogen or other reduction products at the cathode, while valuable organic oxidation products are formed at the anode. This innovative approach significantly increases the profitability of hydrogen production.

Another advantage is that organic oxidation reactions (OOR) for producing the valuable compounds are quite environmentally friendly compared to the conventional synthesis processes which often require aggressive reagents. However, organic oxidation reactions are very complex, involving multiple catalyst states, , intermediate products, the formation and dissolution of bonds, and varying product selectivity. Research on OOR is still in its infancy.

/* */