Toggle light / dark theme

Swedish scientists report a new breakthrough in technology that could transform optical communication in deep space, according to recently published research.

In a study led by a team at Chalmers University of Technology in Sweden, researchers have developed a silent amplifier and ultra-sensitive receiver that can facilitate high-fidelity transmissions over vast distances, showing promise for long-distance space communication.

Optica l Communication Through Deep Space

Award-winning architect Lenka Petráková is pioneering a new way to tackle ocean pollution with an ambitious project named “The 8th Continent.” Her innovative design aims to recycle ocean plastic while functioning as a completely self-sustaining floating structure. If realized, it could mark a significant advancement in global conservation efforts.

“The 8th Continent” is an intricate, five-part structure designed to float on the ocean, equipped with greenhouses, living quarters, and biodegradable waste collectors. It represents more than just a plastic-collection unit; it’s a potential catalyst for restoring damaged marine ecosystems.

Designed to thrive amidst the ocean’s plastic tides, Petráková’s concept could provide a regenerative solution for our polluted waters.

Researchers at Cornell have engineered a groundbreaking porous crystal using a unique fusion of macrocycle and molecular cage structures, enhancing lithium-ion transport in solid-state batteries.

This new crystal design features one-dimensional nanochannels that significantly increase ion conductivity, a development that promises safer batteries and has potential applications in water purification and bioelectronics.

By fusing two contorted molecular structures, Cornell researchers have developed a porous crystal capable of absorbing lithium-ion electrolytes and smoothly transporting them through one-dimensional nanochannels. This innovative design has the potential to enhance the safety of solid-state lithium-ion batteries.

Optical computing aims to replace electricity with light to achieve faster, energy-saving computing.

Researchers have now developed an optical programmable logic array (PLA) that overcomes key hurdles, running advanced logic operations like Conway’s Game of Life. This breakthrough showcases optical computing’s future potential.

For years, researchers have explored ways to use light for computing, seeking faster speeds and reduced energy consumption compared to conventional electronic systems. Optical computing, which relies on light instead of electricity for calculations, offers promising advantages like high parallelism and efficiency. However, implementing complex logic functions with light has been challenging, limiting its practical applications.

In a new study, an international team of physicists has unified two distinct descriptions of atomic nuclei, taking a major step forward in our understanding of nuclear structure and strong interactions. For the first time, the particle physics perspective – where nuclei are seen as made up of quarks and gluons – has been combined with the traditional nuclear physics view that treats nuclei as collections of interacting nucleons (protons and neutrons). This innovative hybrid approach provides fresh insights into short-range correlated (SRC) nucleon pairs – which are fleeting interactions where two nucleons come exceptionally close and engage in strong interactions for mere femtoseconds. Although these interactions play a crucial role in the structure of nuclei, they have been notoriously difficult to describe theoretically.

\r \r.

“Nuclei (such as gold and lead) are not just a ‘bag of non-interacting protons and neutrons’,” explains Fredrick Olness at Southern Methodist University in the US, who is part of the international team. “When we put 208 protons and neutrons together to make a lead nucleus, they interact via the strong interaction force with their nearest neighbours; specifically, those neighbours within a ‘short range.’ These short-range interactions/correlations modify the composition of the nucleus and are a manifestation of the strong interaction force. An improved understanding of these correlations can provide new insights into both the properties of nuclei and the strong interaction force.”