Toggle light / dark theme

How to Make a Jupiter Brain — A Computer the Size of a Planet

How feasible is it to build a Jupiter brain, a computer the size of a planet? Just in the past few decades, the amount of computational power that’s available to humanity has increased dramatically. Your smartphone is millions of times more powerful than the NASA computers used to send astronauts to the moon on the Apollo 11 mission in 1969. Computers have become integral to our lives, becoming the backbone of our communications, finances, education, art, health care, military, and entertainment. In fact, it would be hard to find an area of our lives that computers didn’t affect.

Now imagine that one day we make a computer that’s the size of an entire planet. And we’re not talking Earth, but larger, a megastructure the size of a gas giant like Jupiter. What would be the implications for humans to operate a computer that size, with an absolutely enormous, virtually limitless, amount of computing power? How would our lives change? One certainly begins to conjure up the transformational effects of having so much oomph, from energy generation to space travel and colonization to a fundamental change in the lifespan and abilities of future humans.

Full Story:

Endocrine Disruptors

Endocrine disrupting chemicals cause adverse effects in animals. But limited scientific information exists on potential health problems in humans. Because people are typically exposed to multiple at the same time, assessing public health effects is difficult.


Many chemicals, both natural and man-made, may mimic or interfere with the body’s hormones, known as the endocrine system. Called endocrine disruptors, these chemicals are linked with developmental, reproductive, brain, immune, and other problems.

Endocrine disruptors are found in many everyday products, including some plastic bottles and containers, liners of metal food cans, detergents, flame retardants, food, toys, cosmetics, and pesticides.

Some endocrine-disrupting chemicals are slow to break-down in the environment. That characteristic makes them potentially hazardous over time.

Viren Shah — VP & Chief Digital Officer, GE Appliances (Haier) — Creating Smart Home Ecosystems

Creating Smart Home Ecosystems — Enabling Health & Well-Being In Every Home — Viren Shah, VP & Chief Digital Officer, GE Appliances, Haier


Mr. Viren Shah is Vice President & Chief Digital Officer, at GE Appliances (GEA — https://www.geappliances.com/), the American home appliance manufacturer, now a majority owned subsidiary of the Chinese multinational home appliances company, Haier (https://www.haierappliances.com/).

Mr. Shah has been with GEA since October 2,018 in which time he was appointed to lead the business through a digital transformation with a focus on data/intelligence at the center of gravity.

Prior to becoming part of the Haier company, Mr. Shah was the CIO at Masco Cabinetry, and CIO Council Leader for their parent company, Masco Corporation, the international conglomerate manufacturer of products for the home improvement and new home construction markets.

Mr. Shah has more than 20 years of global experience in creating business value using technology with a strong focus on customers for Fortune 10 organizations, such as his decade at the Walmart organization. He has contributed as a senior leader towards the success of startups, turnarounds and global mergers and acquisitions.

How health care AI could help train tomorrow’s physicians

As the medical community’s understanding of the application of augmented intelligence (AI) in health care grows, there remains the question of how AI—often called artificial intelligence—should be incorporated into physician training. The term augmented intelligence is preferred because it recognizes the enhancement, rather than replacement, of human capabilities.

Understanding how AI can affect patients may help learners appreciate its relevance, he noted, adding that the National Board of Medical Examiners exam now tests physicians-in-training on health systems science, and there are questions about health care AI specifically.

But AI doesn’t just relate to systems issues. It also has a home within evidence-based medicine (EBM).

Full Story:


“Understandably, there have also been many who have been concerned about fitting new content into already overcrowded curricula,” Dr. James said. This can include figuring out who on the faculty will take on teaching new content.

Neuroscientists roll out first comprehensive atlas of brain cells

A slew of new studies now shows that the area of the brain responsible for initiating this action — the primary motor cortex, which controls movement — has as many as 116 different types of cells that work together to make this happen.

The 17 studies, appearing online Oct. 6 in the journal Nature, are the result of five years of work by a huge consortium of researchers supported by the National Institutes of Health’s Brain Research Through Advancing Innovative Neurotechnologies (BRAIN) Initiative to identify the myriad of different cell types in one portion of the brain. It is the first step in a long-term project to generate an atlas of the entire brain to help understand how the neural networks in our head control our body and mind and how they are disrupted in cases of mental and physical problems.

“If you think of the brain as an extremely complex machine, how could we understand it without first breaking it down and knowing the parts?” asked cellular neuroscientist Helen Bateup, a University of California, Berkeley, associate professor of molecular and cell biology and co-author of the flagship paper that synthesizes the results of the other papers. “The first page of any manual of how the brain works should read: Here are all the cellular components, this is how many of them there are, here is where they are located and who they connect to.”

Waning Immune Humoral Response to BNT162b2 Covid-19 Vaccine over 6 Months

Despite high vaccine coverage and effectiveness, the incidence of symptomatic infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been increasing in Israel. Whether the increasing incidence of infection is due to waning immunity after the receipt of two doses of the BNT162b2 vaccine is unclear.


As the rollout of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)1,2 is expanding worldwide, data on the durability of protection are limited. A randomized, controlled trial and real-world studies have shown vaccine efficacy of 94 to 95% with the BNT162b2 vaccine (Pfizer–BioNTech) and vaccine effectiveness in preventing symptomatic coronavirus disease 2019 (Covid-19) 7 days or more after receipt of the second dose of vaccine.1,3–5 Real-world effectiveness and immunogenicity data describing the antibody kinetics over time after vaccination are beginning to appear, but a complete picture of the duration of immunity is not yet available. We recently reported that breakthrough infection in BNT162b2-vaccinated persons was correlated with neutralizing antibody titers.6 However, a threshold titer that can predict breakthrough infection has not been defined.

The BNT162b2 vaccine elicits high IgG and neutralizing antibody responses 7 to 14 days after receipt of the second dose. Lower antibody levels have been shown to develop in older persons, men, and persons with an immunosuppressed condition, which suggests that antibody titers in these populations may decrease earlier than in other populations.7,8 A decrease in anti-spike (S) antibody levels by a factor of two was observed from the peak (at 21 to 40 days) to 84 days after receipt of the second dose of the BNT162b2 vaccine among 197 vaccinated persons.9 Here, we report the results of a large-scale, real-world, longitudinal study involving health care workers that was conducted to assess the kinetics of immune response among persons with different demographic characteristics and coexisting conditions throughout the 6-month period after receipt of the second dose of the BNT162b2 vaccine.

Merck Sells Federally Financed Covid Pill to U.S. for 40 Times What It Costs to Make

A FIVE-DAY COURSE of molnupiravir, the new medicine being hailed as a “huge advance” in the treatment of Covid-19, costs $17.74 to produce, according to a report (pdf) issued last week by drug pricing experts at the Harvard School of Public Health and King’s College Hospital in London. Merck is charging the U.S. government $712 for the same amount of medicine, or 40 times the price. (taxpayer funded mind you)


The Covid-19 treatment molnupiravir was developed using funding from the National Institutes of Health and the Department of Defense.

An ultra detailed map of the brain region that controls movement, from mice to monkeys to humans

It probably didn’t feel like much, but that simple kind of motion required the concerted effort of millions of different neurons in several regions of your brain, followed by signals sent at 200 mph from your brain to your spinal cord and then to the muscles that contracted to move your arm.

At the cellular level, that quick motion is a highly complicated process and, like most things that involve the human brain, scientists don’t fully understand how it all comes together.

Now, for the first time, the neurons and other cells involved in a region of the human, mouse and monkey brains that controls movement have been mapped in exquisite detail. Its creators, a large consortium of neuroscientists brought together by the National Institutes of Health’s Brain Research Through Advancing Innovative Neurotechnologies® (BRAIN) Initiative, say this brain atlas will pave the way for mapping the entire mammalian brain as well as better understanding mysterious brain diseases — including those that attack the neurons that control movement, like amyotrophic lateral sclerosis, or ALS.

/* */