Toggle light / dark theme

AI-powered precision in medicine is helping to enhance the accuracy, efficiency, and personalization of medical treatments and healthcare interventions. Machine learning models analyze vast datasets, including genetic information, disease pathways, and past clinical outcomes, to predict how drugs will interact with biological targets. This not only speeds up the identification of promising compounds but also helps eliminate ineffective or potentially harmful options early in the research process.

Researchers are also turning to AI to improve how they evaluate a drug’s effectiveness across diverse patient populations. By analyzing real-world data, including electronic health records and biomarker responses, AI can help researchers identify patterns that predict how different groups may respond to a treatment. This level of precision helps refine dosing strategies, minimize side effects, and support the development of personalized medicine where treatments are tailored to an individual’s genetic and biological profile.

AI is having a positive impact on the pharmaceutical industry helping to reshape how drugs are discovered, tested, and brought to market. From accelerating drug development and optimizing research to enhancing clinical trials and manufacturing, AI is reducing costs, improving efficiency, and ultimately delivering better treatments to patients.

Imagine that malignant brain tumors are not the unbridled chaos of unchecked growth we think they are, but they are actually communicating with brain cells in very specific ways. That’s what Stanford neuroscientist Michelle Monje MD, PhD, discovered about certain types of brain cancer (called gliomas), including a deadly childhood form called DIPG. It turns out that these tumors can form connections with the brain’s circuitry (just like brain cells do) in order to fuel their own growth. But it’s not just cancers that start in the brain that are doing this. Monje and Stanford researcher Julien Sage, PhD, discovered that a type of cancer that starts in the lungs also engages in this form of hijacking when it spreads to the brain. This is important because we now have significant insight into the process of tumor growth. And these findings help us better understand how we might be able to treat or stop these cancers altogether. For more information, read “Dangerous infiltrators” in Stanford Medicine magazine: https://stan.md/4gZHRh7

#Cancer #Neuroscience #BrainCancer #Glioma #CancerResearch #StanfordMedicine #TumorGrowth #CancerBreakthrough #MedicalResearch #BrainHealth #Oncology.
Stanford Medicine advances human health through world-class biomedical research, education and patient care. Bringing together the resources of Stanford University School of Medicine, Stanford Health Care and Lucile Packard Children’s Hospital, Stanford Medicine is committed to training future leaders in biomedicine and translating the latest discoveries into new ways to prevent, diagnose and treat disease.

The Stanford Medicine YouTube channel is a curated collection of contributions from our School of Medicine departments, divisions, students, and the community. Our diverse content includes coverage of events, presentations, lectures, and associated stories about the people of Stanford Medicine.

A newly identified part of a brain circuit mixes sensory information, memories, and emotions to tell whether things are familiar or new, and important or just “background noise.”

Led by researchers from NYU Langone Health, the work found that a circuit known to carry messages from a brain region that processes sensory information, the entorhinal cortex (EC), to the memory processing center in the hippocampus (HC) has a previously unrecognized pathway that carries messages directly back to the EC.

Publishing online Feb. 18 in Nature Neuroscience, the study results show that this direct feedback loop sends signals fast enough to instantly tag sights and sounds linked to certain objects and places as more important by considering them in the context of memories and emotions.

Researchers have developed a battery capable of converting nuclear energy into electricity through light emission, according to a new study.

Nuclear power plants generate about 20% of the electricity in the United States and produce minimal greenhouse gas emissions. However, they also generate radioactive waste, which poses risks to human health and the environment, making safe disposal a significant challenge.

To address this, a team led by researchers from The Ohio State University designed a system that harnesses ambient gamma radiation to generate electricity. By combining scintillator crystals—high-density materials that emit light when exposed to radiation—with solar cells, they successfully converted nuclear energy into an electric output powerful enough to run microelectronics, such as microchips.

Can Musk send humans to Mars by 2028.


GoldBacks from Galactic/Green Greg’s affiliate link:

Goldbacks


Use coupon code GreenGregs for 1% off.

Outstanding Antioxidant for Your Health: https://shopc60.com/
Use discount code: GreenGregs10 for 10% off.

Inspire your kids to love science!
SAVE 20% OFF New Science Kits Using Code: NEWKITSSAVE20 https://www.pntra.com/t/SENKTExNSUhDR05OSUxJQ0dPRkxGRw.

For gardening in your Lunar or Mars habitat GalacticGregs has teamed up with True Leaf Market http://www.pntrac.com/t/TUJGRklGSkJGTU1IS0hCRkpIRk1K

“Can you hand me the… you know… the thingy? It’s right there next to that other doohickey!” Struggling to find the right word happens to all of us. In fact, it even has a name; lethologica, and it tends to become more common as we get older.

Forgetting words now and then isn’t a big deal, but if it starts happening frequently, it could be an early sign of changes in the brain linked to Alzheimer’s disease —long before more obvious symptoms appear. But here’s the twist: A recent University of Toronto study suggests that how fast you speak might be a better clue about brain health than the occasional word mix-up.

First commercial lander ever just landed on the moon. Watch to see why this is so important.


GoldBacks from Galactic/Green Greg’s affiliate link:

Goldbacks


Use coupon code GreenGregs for 1% off.

Outstanding Antioxidant for Your Health: https://shopc60.com/
Use discount code: GreenGregs10 for 10% off.

Inspire your kids to love science!
SAVE 20% OFF New Science Kits Using Code: NEWKITSSAVE20 https://www.pntra.com/t/SENKTExNSUhDR05OSUxJQ0dPRkxGRw.

For gardening in your Lunar or Mars habitat GalacticGregs has teamed up with True Leaf Market http://www.pntrac.com/t/TUJGRklGSkJGTU1IS0hCRkpIRk1K

Humanity came close to extinction 800,000 years ago. Only 1,280 of our ancestors survived.

A recent study published in Science suggests that a catastrophic “ancestral bottleneck” reduced the global population to just 1,280 breeding individuals, wiping out 98.7% of the early human lineage.

This population crash, lasting about 117,000 years, likely resulted from extreme climate shifts, prolonged droughts, and dwindling food sources.

Using a groundbreaking genetic analysis method called FitCoal, researchers analyzed modern human genomes to trace this dramatic decline, potentially explaining a gap in the African and Eurasian fossil record.

Despite the near-extinction, this bottleneck may have played a crucial role in shaping modern humans. Scientists believe it contributed to a key evolutionary event—chromosome fusion—which may have set Homo sapiens apart from earlier hominin species, including Neanderthals and Denisovans. The study raises intriguing questions about how this small population survived, possibly through early fire use and adaptive intelligence. Understanding this ancient crisis helps scientists piece together the story of human evolution and the resilience that allowed our species to thrive against all odds.

Learn more.


NASA has confirmed that Sunita Williams and Barry Wilmore will return to Earth in late March 2025 after spending over nine months aboard the ISS. Their return is scheduled to take place once the Crew-10 mission successfully arrives at the space station. Crew-10, carrying four new astronauts, will launch on March 12, 2025, at 7:48 PM EDT and undergo a week-long handover process before Williams and Wilmore begin their journey back. The decision to return them aboard a SpaceX Crew Dragon capsule was made due to ongoing technical issues with Boeing’s Starliner. NASA has assured that all necessary preparations are in place to facilitate a safe return. Sunita Williams Health Update: NASA Astronaut’s Mother Bonnie Pandya Dismisses Health Concerns Surrounding Her Daughter, Says ‘Space Is As Safe as Anywhere Else’ (Watch Video).

Williams and Wilmore’s return capsule, the SpaceX Crew Dragon, will follow a carefully planned re-entry trajectory before making a splashdown in designated waters. NASA has shortlisted landing sites in the Atlantic Ocean and the Gulf of Mexico, with the final decision depending on weather and oceanic conditions at the time of descent. SpaceX recovery teams will be stationed near the landing zone, ready to retrieve the capsule and transport the astronauts back to shore. After landing, Williams and Wilmore will undergo a thorough medical assessment before heading to NASA’s facilities for debriefing.

Sunita Williams’ return to Earth marks the end of an unexpectedly extended mission that was originally planned for just ten days but stretched to over nine months. The delay was primarily due to technical issues with Boeing’s Starliner, which faced multiple failures, including propulsion system malfunctions and propellant leaks. NASA, prioritising astronaut safety, decided to postpone their return until a reliable alternative was arranged.

That’s what prompted MIT engineers to create a fabric computer that can be stitched into regular clothes. The device features sensors, processors, memory, batteries, and both optical and Bluetooth communications, allowing networks of these fibers to provide sophisticated whole-body monitoring.

“Our bodies broadcast gigabytes of data through the skin every second in the form of heat, sound, biochemicals, electrical potentials, and light, all of which carry information about our activities, emotions, and health,” MIT professor Yoel Fink, who led the research, said in a press release.

“Wouldn’t it be great if we could teach clothes to capture, analyze, store, and communicate this important information in the form of valuable health and activity insights?”