Toggle light / dark theme

A breakthrough study by the Institut Curie reveals that embryonic cell compaction in humans is caused by cell contraction, offering new insights to enhance assisted reproductive technology success rates.

In human development, the compaction of embryonic cells is a vital process in the early stages of an embryo’s formation. Four days post-fertilization, the cells tighten together, helping to form the embryo’s initial structure. If compaction is flawed, it can hinder the development of the essential structure needed for the embryo to attach to the uterus. During assisted reproductive technology (ART), this stage is meticulously observed before the embryo is implanted.

An interdisciplinary research team led by scientists at the Genetics and Developmental Biology Unit at the Institut Curie (CNRS/Inserm/Institut Curie) studying the mechanisms at play in this still little-known phenomenon has made a surprising discovery: human embryo compaction is driven by the contraction of embryonic cells. Compaction problems are therefore due to faulty contractility in these cells, and not a lack of adhesion between them, as was previously assumed. This mechanism had already been identified in flies, zebrafish, and mice, but is a first in humans.

The results of a metagenomic study from the University of Trento suggest that the CRISPR toolbox will need to make room for another CRISPR enzyme. The disruption should be minimal because the newly identified enzyme is unusually compact. It consists of just over 1,000 amino acids. And yet it is also strongly active and highly precise. The hope is that it can be packaged with guide RNA within the tight quarters afforded by adeno-associated virus (AAV) vectors, and thereby expand the use of in vivo gene editing in therapeutic applications.

The study was led by Anna Cereseto, PhD, and Nicola Segata, PhD, of the department of cellular, computational, and integrative biology. Cereseto leads a laboratory that develops advanced genome editing technologies and their application in the medical sector. Segata is the head of a laboratory of metagenomics, where he studies the variety and characteristics of the human microbiome and its role in health. Their collaboration has led to the identification, in a bacterium of the intestine, of new CRISPR-Cas9 molecules that could have a clinical potential to treat genetic diseases.

Detailed findings from the study recently appeared in Nature Communications, in an article titled, “CoCas9 is a compact nuclease from the human microbiome for efficient and precise genome editing.”

Now that’s Wonderful. It’s touching by how they were brought to tears in making progress in fighting neurogenitive disease.


Auckland scientists are celebrating an important breakthrough after zeroing in on a rare genetic mutation causing motor neuron disease. Their work is now being published in the journal Brain, and national correspondent Amanda Gillies spoke to the lead researcher. ➡️ SUBSCRIBE: https://bit.ly/NewshubYouTube.

You’re joining us on the official YouTube channel for Warner Bros. Discovery’s Newshub. Here you will find livestreams and news videos from our award-winning team of journalists working across our bulletins and shows — AM, Paddy Gower Has Issues, Newshub Nation, and The Hui.

Year 2013 face_with_colon_three


Scientists at Oregon Health & Science University and the Oregon National Primate Research Center (ONPRC) have successfully reprogrammed human skin cells to become embryonic stem cells capable of transforming into any other cell type in the body. It is believed that stem cell therapies hold the promise of replacing cells damaged through injury or illness. Diseases or conditions that might be treated through stem cell therapy include Parkinson’s disease, multiple sclerosis, cardiac disease and spinal cord injuries.

The research breakthrough, led by Shoukhrat Mitalipov, Ph.D., a senior scientist at ONPRC, follows previous success in transforming monkey skin cells into embryonic stem cells in 2007. This latest research will be published in the journal Cell online May 15 and in print June 6.

The technique used by Drs. Mitalipov, Paula Amato, M.D., and their colleagues in OHSU’s Division of Reproductive Endocrinology and Infertility, Department of Obstetrics & Gynecology, is a variation of a commonly used method called somatic cell nuclear transfer, or SCNT. It involves transplanting the nucleus of one cell, containing an individual’s DNA, into an egg cell that has had its genetic material removed. The unfertilized egg cell then develops and eventually produces stem cells.

Researchers have discovered that individuals who live to be 100 years old and remain cognitively healthy possess genetic variations that may protect against Alzheimer’s disease. These “protective alleles” are significantly more prevalent among centenarians compared to Alzheimer’s patients and even middle-aged individuals without the disease. This finding could pave the way for new approaches in preventing and treating Alzheimer’s, particularly by focusing on enhancing these protective genetic mechanisms.

The new findings have been published in the journal Alzheimer’s & Dementia.

Alzheimer’s disease is a progressive neurological disorder that predominantly affects older adults, leading to a decline in cognitive functions such as memory and reasoning. Over time, this can result in a complete loss of independence and eventually death. The risk of developing Alzheimer’s increases significantly with age, and while it is not an inevitable part of aging, it is one of the most common causes of dementia among seniors.