Toggle light / dark theme

Canadian researchers have discovered a new kind of organism that’s so different from other living things that it doesn’t fit into the plant kingdom, the animal kingdom, or any other kingdom used to classify known organisms.

Two species of the microscopic organisms, called hemimastigotes, were found in dirt collected on a whim during a hike in Nova Scotia by Dalhousie University graduate student Yana Eglit.

A genetic analysis shows they’re more different from other organisms than animals and fungi (which are in different kingdoms) are from each other, representing a completely new part of the tree of life, Eglit and her colleagues report this week in the journal Nature.

Read more

“We’re going to get these massive pools of sequenced genomic data,” Metzl said. “The real gold will come from comparing people’s sequenced genomes to their electronic health records, and ultimately their life records.” Getting people comfortable with allowing open access to their data will be another matter; Metzl mentioned that Luna DNA and others have strategies to help people get comfortable with giving consent to their private information. But this is where China’s lack of privacy protection could end up being a significant advantage.

To compare genotypes and phenotypes at scale—first millions, then hundreds of millions, then eventually billions, Metzl said—we’re going to need AI and big data analytic tools, and algorithms far beyond what we have now. These tools will let us move from precision medicine to predictive medicine, knowing precisely when and where different diseases are going to occur and shutting them down before they start.

But, Metzl said, “As we unlock the genetics of ourselves, it’s not going to be about just healthcare. It’s ultimately going to be about who and what we are as humans. It’s going to be about identity.”

Read more

A small device that contains human cells in a 3D matrix represents a giant leap in the ability of scientists to test how those cells respond to stresses, drugs and genetic changes. About the size of a thumb drive, the devices are known as tissue chips or organs on chips.

A series of investigations to test tissue chips in microgravity aboard the International Space Station is planned through a collaboration between the National Center for Advancing Translational Sciences (NCATS) at the National Institutes for Health (NIH) and the Center for the Advancement of Science in Space (CASIS) in partnership with NASA. The Tissue Chips in Space initiative seeks to better understand the role of microgravity on human health and disease and to translate that understanding to improved human health on Earth.

“Spaceflight causes many significant changes in the human body,” said Liz Warren, associate program scientist at CASIS. “We expect tissue chips in space to behave much like an astronaut’s body, experiencing the same kind of rapid change.”

Read more

Researchers at Umeå university in Sweden have published a new study showing that the gut bacteria can carry information of past experiences of an altered environment from parents to offspring. Eggs and sperm are not the only information carriers from one generation to the next.

Eggs and transmit genetic from one generation to the next. The genetic information contains the blueprint for how to assemble a functional offspring. Most of this information is hardcoded in DNA and cannot be altered by experiences such as changes to the environment.

However, in the last decades, it has been shown that some effects of various lifestyles can be transmitted from to offspring through both the egg and the sperm. This study shows for the first time that also the , which are in general also transmitted from parents to offspring, are capable of transmitting information about what environment the parents were exposed to, to the offspring.

Read more

A new study by Calico found that our genes determine our lifespan much less than previously accepted and lifespan heritability is less than seven percent.


Although long life tends to run in families, genetics has far less influence on life span than previously thought, according to a new analysis of an aggregated set of family trees of more than 400 million people. The results suggest that the heritability of life span is well below past estimates, which failed to account for our tendency to select partners with similar traits to our own. The research, from Calico Life Sciences and Ancestry, was published in Genetics.

“We can potentially learn many things about the biology of aging from human genetics, but if the heritability of is low, it tempers our expectations about what types of things we can learn and how easy it will be,” says lead author Graham Ruby. “It helps contextualize the questions that scientists studying aging can effectively ask.”

Ruby’s employer, Calico Life Sciences, is a research and development company whose mission is to understand the biology of aging. They teamed up with scientists from the online genealogy resource Ancestry, led by Chief Scientific Officer Catherine Ball, to use publicly available pedigree data from Ancestry.com to estimate the heritability of human life span.

Read more

“There was something else, too – something weirder. Of all the non-human DNA fragments the team gathered, 99 percent of them failed to match anything in existing genetic databases the researchers examined. We found a whole new class of human-infecting ones that are closer to the animal class than to the previously known human ones, so quite divergent on the evolutionary scale.”

A landmark Stanford 2017 study indicates that more than 99 percent of the microbes inside us are unknown to science. The survey of DNA fragments circulating in the blood suggests the microbes living within us are vastly more diverse than previously known. In fact, 99 percent of that DNA has never been seen before.

A new survey of DNA fragments circulating in human blood suggests our bodies contain vastly more diverse microbes than anyone previously understood. What’s more, the overwhelming majority of those microbes have never been seen before, let alone classified and named, Stanford researchers reported in the Proceedings of the National Academy of Sciences.

Read more