Toggle light / dark theme

Rejuvenate Bio Using Gene Therapy Has Reversed Aging Effects in Mice and Dogs

Is it me? Or am I the only one who wishes George Church was not so secretive? https://www.nextbigfuture.com/2019/05/rejuvenate-bio-using-g…dogs.html?


Harvard Genetics Giant Geroge Church and Noah Davidsohn, a former postdoc in his lab, have engaged in a secretive antiaging venture called Rejuvenate Bio. They are making old dogs new. They have conducted gene therapy on beagles and are currently advertising for Cavalier King Charles spaniels to use gene therapy to fix their hearts.

They have identified many other targets for gene-based interventions, studying a database of aging-related genes.

Most of the work was done in mice, where they have extended the life of mice by a factor of two. Nextbigfuture notes that this would mean mice would live 6 years with treatment instead of 3 years.

Read more

Family Matters podcast: Why all same-sex twins should get genetic testing

LISTEN ABOVE: The director of the Twin Studies Center at California State University explains why all same-sex twins should get genetic testing.

Are you a twin? And if so, do you know with confidence whether you are an identical or fraternal twin?

Many parents rely on the results of an ultrasound. If there are two placentas, they assume they are carrying fraternal twins, and if there is one placenta, it’s assumed the twins are identical.

Read more

Why CRISPR Technology is the Key to Innovation in AI

CRISPR technology is a simple yet powerful tool for editing genomes. It allows researchers to easily alter DNA sequences and modify gene function.

It has many potential applications include correcting genetic defects, treating and preventing the spread of diseases and improving crops. By delivering the CRISPR enzyme Cas9 nuclease coupled with synthetic guide RNA (gRNA) into a cell, the cell’s genome can be cut at a desired location, that allows existing genes to be removed or add new ones.

Read more

Scientists ‘went rogue’ and genetically engineered two human babies—or at least claimed to

In the past 24 hours, a story of potentially world-changing import has surfaced. First reported by the MIT Technology Review and then not long after by the Associated Press, who seem to have been sitting on the story for a while, the news that a Chinese scientist named He Jiankui led an unprecedented experiment to edit human embryos and see them carried to term rocked the genetics community. Here’s what you need to know about this evolving story.

The science

Besides He, the most important players in this story may be twin baby girls named Nana and Lulu. As far as we know the twins were edited as embryos using CRISPR-cas9, a gene editing tool. The stated purpose of the edit was to disable CCR5, a gene involved in allowing HIV to invade cells, which is how a virus infects a host.

Read more

Genetically engineered immune cells fight off deadly virus in mice

Researchers may have demonstrated a novel way to protect us from some of the world’s deadliest viruses. By genetically engineering immune cells to make more effective antibodies, they have defended mice from a potentially lethal lung virus. The same strategy could work in humans against diseases for which there are no vaccines.

“It’s a huge breakthrough,” says immunologist James Voss of the Scripps Research Institute in San Diego, California, who wasn’t connected to the study.

Vaccines typically contain a disabled microbial invader or shards of its molecules. They stimulate immune cells known as B cells to crank out antibodies that target the pathogen. Not everyone who receives a vaccine gains protection, however. Some patients’ antibodies aren’t up to snuff, for instance. And researchers haven’t been able to develop vaccines against some microbes, such as HIV and the respiratory syncytial virus (RSV), which causes lung infections mainly in children and people with impaired immune systems.

Read more

Scientists Created This Organism’s DNA From Scratch

For the first time, scientists have created life with genetic code that was developed from scratch.

A University of Cambridge team created living, reproducing E. coli bacteria with DNA coded entirely by humans, according to The New York Times. The new bacteria look a little wonky, but they behave more or less the same as natural E. coli. Learning to rebuild genomes from scratch could teach scientists how DNA originally came to be — and how we can manipulate it to create new life.

Read more

Natural compound found in broccoli reawakens the function of potent tumor suppressor

Your mother was right: Broccoli is good for you. Long associated with decreased risk of cancer, broccoli and other cruciferous vegetables—the family of plants that also includes cauliflower, cabbage, collard greens, Brussels sprouts and kale—contain a molecule that inactivates a gene known to play a role in a variety of common human cancers. In a new paper published today in Science, researchers, led by Pier Paolo Pandolfi, MD, Ph.D., Director of the Cancer Center and Cancer Research Institute at Beth Israel Deaconess Medical Center, demonstrate that targeting the gene, known as WWP1, with the ingredient found in broccoli suppressed tumor growth in cancer-prone lab animals.

“We found a new important player that drives a pathway critical to the development of , an enzyme that can be inhibited with a natural compound found in broccoli and other ,” said Pandolfi. “This pathway emerges not only as a regulator for control, but also as an Achilles’ heel we can target with therapeutic options.”

A well-known and potent suppressive gene, PTEN is one of the most frequently mutated, deleted, down-regulated or silenced in human cancers. Certain inherited PTEN mutations can cause syndromes characterized by cancer susceptibility and developmental defects. But because complete loss of the gene triggers an irreversible and potent failsafe mechanism that halts proliferation of cancer cells, both copies of the gene (humans have two copies of each gene; one from each parent) are rarely affected. Instead, exhibit lower levels of PTEN, raising the question whether restoring PTEN activity to normal levels in the cancer setting can unleash the gene’s tumor suppressive activity.

Read more

Russia joins in global gene-editing bonanza

Alexey Kochetov, director of the Siberian Branch of the Russian Academy of Sciences (RAS) Institute of Cytology and Genetics in Novosibirsk, welcomed the research programme, noting that genetics in Russia has been “chronically underfinanced” for decades. Funding for science plummeted in the 1990s following the break-up of the Soviet Union, and Russia still lags behind other major powers: in 2017, it spent 1.11% of its gross domestic product on research, compared with 2.13% in China and 2.79% in the United States.


A US$1.7-billion programme aims to develop 30 gene-edited plant and animal varieties in the next decade. A US$1.7-billion programme aims to develop 30 gene-edited plant and animal varieties in the next decade.

Read more