Toggle light / dark theme

Humans today are mosaics, our genomes rich tapestries of interwoven ancestries. With every fossil discovered, with every DNA analysis performed, the story gets more complex: We, the sole survivors of the genus Homo, harbor genetic fragments from other closely related but long-extinct lineages. Modern humans are the products of a sprawling history of shifts and dispersals, separations and reunions—a history characterized by far more diversity, movement and mixture than seemed imaginable a mere decade ago.

Original story reprinted with permission from Quanta Magazine, an editorially independent publication of the Simons Foundation whose mission is to enhance public understanding of science by covering research developments and trends in mathematics and the physical and life sciences.

But it’s one thing to say that Neanderthals interbred with the ancestors of modern Europeans, or that the recently discovered Denisovans interbred with some older mystery group, or that they all interbred with each other. It’s another to provide concrete details about when and where those couplings occurred. “We’ve got this picture where these events are happening all over the place,” said Aylwyn Scally, an evolutionary geneticist at the University of Cambridge. “But it’s very hard for us to pin down any particular single event and say, yeah, we’re really confident that that one happened — unless we have ancient DNA.”

The answer to halting triple-negative breast cancer, the deadliest of all breast cancers, may have just been discovered by researchers from Boston Children’s Hospital.

A CRISPR gene-editing system — all encompassed into a nanogel capsule, that is then injected into the affected person’s body — is the potential antidote to stopping the growth of triple-negative breast cancer tumors.

RELATED: FIRST CRISPR USE INSIDE THE BODY WILL HELP TREAT BLINDNESS IN CHILDREN AND ADULTS

Dr. Mike Chan, Stellar Biomolecular Reserch, chats with James Strole, Director of the Coalition for Radical Life Extension, about what he’s bringing to RAADfest 2019: age reversal of organs using cell and stem cell therapies.


For more info and to register: http://www.raadfest.com/

Organized by the Coalition for Radical Life Extension, RAADfest is the largest event in the world where practical and cutting-edge methods to reverse aging are presented for all interest levels, from beginner to expert. An interactive, inclusive event featuring dozens of top presenters in life extension, regenerative medicine, super longevity, lifestyle, genetics, life hacking, finances, and more. RAADfest will also feature activists and advocate entertainers, celebrations, RAADcity the Expo and RAADclinic.

The Coalition for Radical Life Extension is a non-profit organization.

Scientists have produced and tested, in mice, a vaccine that protects against a worrisome superbug: a hypervirulent form of the bacteria Klebsiella pneumoniae. And they’ve done so by genetically manipulating a harmless form of E. coli, report researchers at Washington University School of Medicine in St. Louis and VaxNewMo, a St. Louis-based startup.

Klebsiella pneumoniae causes a variety of infections including rare but life-threatening liver, respiratory tract, bloodstream and other infections. Little is known about how exactly people become infected, and the bacteria are unusually adept at acquiring resistance to antibiotics. The prototype , details of which are published online Aug. 27 in Proceedings of the National Academy of Sciences, may offer a way to protect people against a lethal infection that is hard to prevent and treat.

“For a long time, Klebsiella was primarily an issue in the hospital setting, so even though was a real problem in treating these infections, the impact on the public was limited,” said co-author David A. Rosen, MD, Ph.D., an assistant professor of pediatrics and of molecular microbiology at Washington University. “But now we’re seeing Klebsiella strains that are virulent enough to cause death or severe disease in healthy people in the community. And in the past five years, the really resistant bugs and the really virulent bugs have begun to merge so we’re beginning to see drug-resistant, hypervirulent strains. And that’s very scary.”

Researchers have launched a new database dedicated to mapping and understanding the complexity of cellular senescence in a bid to help us fully understand this age-related phenomenon.

Introducing the CellAge database

The Human Ageing Genomic Resources ( HAGR ) is a series of databases and tools that have been developed to aid researchers on aging and help them study the genetic elements of human aging. The databases utilize modern techniques, such as functional genomics, network analyses, systems biology, and evolutionary analyses, to build what is one of the most valuable resources available today.

SAN ANTONIO — Sleep-disordered breathing (SDB), and the disruption in nightly sleep it causes, speeds up the aging process, according to preliminary research.

SDB is a common disorder that results in oxidative stress and inflammation and is associated with several age-related health disorders. However, it hasn’t been well studied with respect to epigenetic aging.

“To our knowledge, this study is the first empirical study that has linked sleep-disordered breathing with epigenetic age acceleration,” Xiaoyu Li, ScD, of Brigham and Women’s Hospital and Harvard Medical School in Boston, Massachusetts, told Medscape Medical News.

An international group of scientists studied the effects of 17 different lifespan-extending interventions on gene activity in mice and discovered genetic biomarkers of longevity. The results of their study were published in the journal Cell Metabolism.

Nowadays, dozens of interventions are known that extend the lifespan of various living organisms ranging from yeast to mammals. They include chemical compounds (e.g. rapamycin), genetic interventions (e.g. mutations associated with disruption of growth hormone synthesis), and diets (e.g. caloric restriction). Some targets of these interventions have been discovered. However, there is still no clear understanding of the systemic molecular mechanisms leading to lifespan extension.

A group of scientists from Skoltech, Moscow State University and Harvard University decided to fill this gap and identify crucial molecular processes associated with longevity. To do so, they looked at the effects of various lifespan-extending interventions on the activity of genes in a mouse, a commonly used model organism closely related to humans.

Chemotherapy works off of a basic premise: kill all rapidly-growing cells in an effort to wipe out tumor cells. The tactic, while generally effective, has quite a few off-target casualties, including cells that produce hair and cells that line the stomach.

Scientists have tried to skirt the problem by creating missile-like drugs that zero in on cancer cells specifically, sparing healthy cells.

These missile-like drugs, known as antibody-drug conjugates (ADCs), have been in the works for decades, but only in recent years have they made it to clinical trials, Kimberly Tsui, a genetics graduate student, told me.