Menu

Blog

Archive for the ‘genetics’ category: Page 393

Oct 2, 2018

The Reversibility of Human Aging

Posted by in categories: biotech/medical, genetics, life extension

Today, we would like to share with you a talk by Dr. Michael West from AgeX Therapeutics, a company developing therapies to combat age-related diseases by encouraging the body to regenerate cells and tissues.

On July 12th, we hosted our first conference, Ending Age-Related Diseases: Investment Prospects & Advances in Research, at the Frederick P. Rose Auditorium, which is part of the Cooper Union campus in New York City. The packed event saw a range of people from research, investment, and the wider community coming together for a day of science and biotech business presentations and panels.

Continue reading “The Reversibility of Human Aging” »

Oct 1, 2018

Genetically engineered viruses discern, destroy E. coli in drinking water

Posted by in categories: bioengineering, biotech/medical, genetics, sustainability

To rapidly detect the presence of E. coli in drinking water, Cornell University food scientists now can employ a bacteriophage — a genetically engineered virus — in a test used in hard-to-reach areas around the world.

Read more

Oct 1, 2018

Your Environment Could Be Changing Your IQ on a Genetic Level, Study Finds

Posted by in categories: genetics, neuroscience

Be gone flat earthism.


The nature-versus-nurture argument of intelligence just got a lot more complicated with the discovery that the environment can modify the expression of a key gene in the brain, affecting intelligence far more than we previously thought.

Such a finding may not come as a surprise if you remember that numerous genes influence our IQ and stressful experiences can lock and unlock genes in our brains. Yet having hard evidence of the link will no doubt stir debate on just what it means to be “smart”.

Continue reading “Your Environment Could Be Changing Your IQ on a Genetic Level, Study Finds” »

Sep 29, 2018

Molecular switches are not just ‘on’ or ‘off’

Posted by in categories: biological, genetics

👀


The GTPases constitute a very large protein family, whose members are involved in the control of cell growth, transport of molecules, synthesis of other proteins, etc. Despite the many functions of the GTPases, they follow a common cyclic pattern (Figure 1). The activity of the GTPases is regulated by factors that control their ability to bind and hydrolyse guanosine triphosphate (GTP) to guanosine diphosphate (GDP). So far, it has been the general assumption that a GTPase is active or “on” when it is bound to GTP and inactive or “off” in complex with GDP. The GTPases are therefore sometimes referred to as molecular “switches.”

The bacterial translational elongation factor EF-Tu is a GTPase, which plays a crucial role during the synthesis of proteins in bacteria, as the factor transports the amino acids that build up a cell’s proteins to the cellular protein synthesis factory, the ribosome. Previous structural studies using X-ray crystallography have shown that EF-Tu occurs in two markedly different three-dimensional shapes depending on whether the factor is “on” (i.e. bound to GTP) or “off” (i.e. bound to GDP) (Figure 2). The binding of GTP/GDP have therefore always been thought to be decisive for the factor’s structural conformation.

Continue reading “Molecular switches are not just ‘on’ or ‘off’” »

Sep 28, 2018

Can genetic tests gauge how well antidepressants will work?

Posted by in categories: genetics, health, neuroscience

With the introduction of more products aimed at gauging the effectiveness of mental health treatments, science is getting left behind, some experts say.

Read more

Sep 27, 2018

Switching Off ALPL Gene Contributes to Bone Aging

Posted by in categories: bioengineering, biotech/medical, genetics, life extension

A recent open-access mouse study published by Xi’an Institute of Tissue Engineering and Regenerative Medicine scientists in the journal Bone Research describes how the ALPL gene affects bone aging and suggests that metformin might constitute a viable therapeutic option to prevent it [1].

Study abstract

Mutations in the liver/bone/kidney alkaline phosphatase (Alpl) gene cause hypophosphatasia (HPP) and early-onset bone dysplasia, suggesting that this gene is a key factor in human bone development. However, how and where Alpl acts in bone ageing is largely unknown. Here, we determined that ablation of Alpl induces prototypical premature bone ageing characteristics, including bone mass loss and marrow fat gain coupled with elevated expression of p16INK4A (p16) and p53 due to senescence and impaired differentiation in mesenchymal stem cells (MSCs). Mechanistically, Alpl deficiency in MSCs enhances ATP release and reduces ATP hydrolysis. Then, the excessive extracellular ATP is, in turn, internalized by MSCs and causes an elevation in the intracellular ATP level, which consequently inactivates the AMPKα pathway and contributes to the cell fate switch of MSCs.

Continue reading “Switching Off ALPL Gene Contributes to Bone Aging” »

Sep 26, 2018

Genetic testing: Not a one-and-done deal

Posted by in categories: biotech/medical, genetics

That conclusion is based on a study that reviewed genetic testing results from 1.45 million individuals and found that nearly 25 percent of “variants of uncertain significance” were subsequently reclassified — sometimes as less likely to be associated with cancer, sometimes as more likely.

The study appears in the Journal of the American Medical Association (JAMA).

When variations from the norm are discovered in a gene, the variants are classified as “benign,” “likely benign,” “variant of uncertain significance,” “likely pathogenic,” or “pathogenic.”

Read more

Sep 25, 2018

An Interview with Mike Bonkowski

Posted by in categories: biotech/medical, chemistry, genetics, life extension

Today, we have an interview with Dr. Michael Bonkowski, an expert on NAD+ biology and aging from the David Sinclair Lab, Harvard Medical School.

Michael Bonkowski aims to advance our understanding of the links between metabolism, aging, and age-associated diseases. He has published 35 peer-reviewed journal articles and has conducted multiple successful longevity studies. In Dr. David Sinclair’s lab, his research efforts are focused on the role of nutrient sensors’ regulation of endocrine signaling and aging in the mouse. He is also working on direct and indirect ways to drive the activity of these nutrient sensors by using dietary manipulations, small molecules, and chemical treatments.

Michael is trained as a pharmacologist, physiologist, and animal scientist. Some of his areas of expertise include animal physiology, genetics, glucose, and insulin homeostasis, metabolism, assay development, protein biochemistry, and transmission electron microscopy imaging.

Read more

Sep 25, 2018

Bioquark Inc. — Reader’s Digest (15 Cool Future Jobs) — Ira Pastor

Posted by in categories: aging, bioengineering, biotech/medical, DNA, futurism, genetics, health, life extension, posthumanism, science

Sep 23, 2018

Study of one million people leads to world’s biggest advance in blood pressure genetics

Posted by in categories: biotech/medical, genetics

Over 500 new gene regions that influence people’s blood pressure have been discovered in the largest global genetic study of blood pressure to date, led by Queen Mary University of London and Imperial College London.

Involving more than one million participants, the results more than triple the number of gene regions to over 1,000 and means that almost a third of the estimated heritability for pressure is now explained.

The study, published in Nature Genetics and supported by the National Institute for Health Research (NIHR), Medical Research Council and British Heart Foundation, also reports a strong role of these genes, not only in blood vessels, but also within the adrenal glands above the kidney, and in body fat.

Continue reading “Study of one million people leads to world’s biggest advance in blood pressure genetics” »