Menu

Blog

Archive for the ‘genetics’ category: Page 174

Aug 14, 2022

New Molecule Discovered That Strongly Stimulates Hair Growth

Posted by in categories: biotech/medical, chemistry, genetics

A team at the University of California, Irvine, has identified a signaling molecule that potently stimulates hair growth.

A signaling molecule known as SCUBE3, which was discovered by researchers at the University of California, Irvine, has the potential to cure androgenetic alopecia, a prevalent type of hair loss in both women and men.

The research, which was recently published in the journal Developmental Cell, uncovered the precise mechanism by which the dermal papilla cells, specialized signal-producing fibroblasts found at the bottom of each hair follicle, encourage new development. Although the critical role dermal papilla cells play in regulating hair growth is widely established, the genetic basis of the activating chemicals involved is little understood.

Aug 14, 2022

File or directory not found

Posted by in categories: biotech/medical, genetics, media & arts

https://www.jpost.com/health-and-wellness/article-714670 https://youtu.be/uc6f_2npsx8

The seeds of innovation appear to be seedless. According to game-changing research led by our very own Dr. Lior Rubinovich, it is now finally possible to grow avocado plants solely from tissue culture. Why is this good? Aside from being free of deformities, disease-proof, and significantly fast-growing – cultivated avocado plants mean genetic uniformity, which implies that all plants originate from the same delicious, nutritious, and healthy tissue. The founding of Bestree means a great deal for the northern region of Israel, both financially and innovatively. Therefore, we are proud to share this inspiring research with the rest of the world! Read more about Bestree & cultivated avocados in the full article https://www.ice.co.il/media/news/article/876527

האם ניתן לרבות שתילי אבוקדו בתרביות ריקמה? עד לפני כמה חודשים התשובה הייתה: “אולי, אבל טרם הצלחנו להבין כיצד לעשות זאת” היום התמונה היא אחרת, בעקבות מחקרו פורץ הדרך של ד“ר ליאור רובינוביץ’ הפך אבוקדו שמיוצר בתרבית ריקמה לרעיון שלא רק ניתן ליישמו במעבדה אלא גם למסחרו ולהביאו כבשורה לחקלאות העולמית! זהו פיתוחה וחזונה של חב’ Bestree אשר הוקמה על בסיס מחקרו של רבינוביץ’ ונחנכה בטקס חגיגי בקיבוץ אל-רום שבגליל. מעבר ליתרונות השיווקיים והכלכליים של המהלך – הקמתה של חב’ Bestree שמה את מיגל בשורה הראשונה של מכוני מחקר בעולם ובכך מקדמת גם את הפיתוח וההתחדשות החקלאית והמדעית של צפון מדינת ישראל! לחצו לקריאה מורחבת אודות חב’ Bestree https://www.ice.co.il/media/news/article/876527


Music video by Styx performing Mr. Roboto. © 1983 A&M Records.

Continue reading “File or directory not found” »

Aug 8, 2022

Researchers discover one of the largest known bacteria-to-animal gene transfers inside a fruit fly

Posted by in categories: biotech/medical, genetics

A fruit fly genome is not a just made up of fruit fly DNA—at least for one fruit fly species. New research from the University of Maryland School of Medicine’s (UMSOM) Institute for Genome Sciences (IGS) shows that one fruit fly species contains whole genomes of a kind of bacteria, making this finding the largest bacteria-to-animal transfer of genetic material ever discovered. The new research also sheds light on how this happens.

The IGS researchers, led by Julie Dunning Hotopp, Ph.D., Professor of Microbiology and Immunology at UMSOM and IGS, used new genetic long-read sequencing technology to show how genes from the bacteria Wolbachia incorporated themselves into the fly genome up to 8,000 years ago.

The researchers say their findings show that unlike Darwin’s finches or Mendel’s peas, isn’t always small, incremental, and predictable.

Aug 7, 2022

New DNA repair-kit successfully fixes hereditary disease in patient-derived cells

Posted by in categories: biotech/medical, genetics

Genetic mutations which cause a debilitating hereditary kidney disease affecting children and young adults have been fixed in patient-derived kidney cells using a potentially game-changing DNA repair-kit. The advance, developed by University of Bristol scientists, is published in Nucleic Acids Research.

In this new study, the international team describe how they created a DNA repair vehicle to genetically fix faulty podocin, a common genetic cause of inheritable Steroid Resistant Nephrotic Syndrome (SRNS).

Podocin is a protein normally located on the surface of specialized and essential for . Faulty podocin, however, remains stuck inside the cell and never makes it to the surface, terminally damaging the podocytes. Since the disease cannot be cured with medications, gene therapy which repairs the causing the faulty podocin offers hope for patients.

Aug 5, 2022

First electric nanomotor made from DNA material

Posted by in categories: biotech/medical, genetics, nanotechnology

A research team led by the Technical University of Munich (TUM) has succeeded for the first time in producing a molecular electric motor using the DNA origami method. The tiny machine made of genetic material self-assembles and converts electrical energy into kinetic energy. The new nanomotors can be switched on and off, and the researchers can control the rotation speed and rotational direction.

Be it in our cars, drills or automatic coffee grinders—motors help us perform work in our everyday lives to accomplish a wide variety of tasks. On a much smaller scale, natural molecular motors perform vital tasks in our bodies. For instance, a protein known as ATP synthase produces the molecule adenosine triphosphate (ATP), which our body uses for short-term storage and transfer of energy.

While natural molecular motors are essential, it has been quite difficult to recreate motors on this scale with roughly similar to those of natural molecular motors like ATP synthase. A research team has now constructed a working nanoscale molecular rotary motor using the DNA origami method and published their results in Nature. The team was led by Hendrik Dietz, Professor of Biomolecular Nanotechnology at TUM, Friedrich Simmel, Professor of Physics of Synthetic Biological Systems at TUM, and Ramin Golestanian, director at the Max Planck Institute for Dynamics and Self-Organization.

Aug 4, 2022

Genetically modified ‘shortcut’ boosts plant growth

Posted by in categories: food, genetics

Circa 2019


Scientists overcome a natural restriction in plants that could boost yields from important food crops.

Aug 4, 2022

Scientists Uncover the Secret of Brain Cancer’s ‘Immortality Switch’

Posted by in categories: biotech/medical, genetics, life extension, neuroscience

Circa 2018


New research has opened doors to using the gene-editing tool CRISPR to stop cancer cells from dividing indefinitely.

Aug 4, 2022

New method mass-produces antitumor cells to treat blood diseases and cancer

Posted by in categories: bioengineering, biotech/medical, chemistry, genetics

A Purdue University chemical engineer has improved upon traditional methods to produce off-the-shelf human immune cells that show strong antitumor activity, according to a paper published in the peer-reviewed journal Cell Reports.

Xiaoping Bao, a Purdue University assistant professor from the Davidson School of Chemical Engineering, said CAR-neutrophils, or chimeric antigen receptor neutrophils, and engraftable HSCs, or , are effective types of therapies for blood diseases and cancer. Neutrophils are the most abundant white cell blood type and effectively cross physiological barriers to infiltrate solid tumors. HSCs are specific progenitor that will replenish all blood lineages, including neutrophils, throughout life.

“These cells are not readily available for broad clinical or research use because of the difficulty to expand ex vivo to a sufficient number required for infusion after isolation from donors,” Bao said. “Primary neutrophils especially are resistant to genetic modification and have a short half-life.”

Aug 3, 2022

The serotonin theory of depression: a systematic umbrella review of the evidence

Posted by in categories: education, genetics, health, neuroscience

In order to cover the different areas and to manage the large volume of research that has been conducted on the serotonin system, we conducted an ‘umbrella’ review. Umbrella reviews survey existing systematic reviews and meta-analyses relevant to a research question and represent one of the highest levels of evidence synthesis available [23]. Although they are traditionally restricted to systematic reviews and meta-analyses, we aimed to identify the best evidence available. Therefore, we also included some large studies that combined data from individual studies but did not employ conventional systematic review methods, and one large genetic study. The latter used nationwide databases to capture more individuals than entire meta-analyses, so is likely to provide even more reliable evidence than syntheses of individual studies.

We first conducted a scoping review to identify areas of research consistently held to provide support for the serotonin hypothesis of depression. Six areas were identified, addressing the following questions: Serotonin and the serotonin metabolite 5-HIAA–whether there are lower levels of serotonin and 5-HIAA in body fluids in depression; Receptors — whether serotonin receptor levels are altered in people with depression; The serotonin transporter (SERT) — whether there are higher levels of the serotonin transporter in people with depression (which would lower synaptic levels of serotonin); Depletion studies — whether tryptophan depletion (which lowers available serotonin) can induce depression; SERT gene – whether there are higher levels of the serotonin transporter gene in people with depression; Whether there is an interaction between the SERT gene and stress in depression.

We searched for systematic reviews, meta-analyses, and large database studies in these six areas in PubMed, EMBASE and PsycINFO using the Healthcare Databases Advanced Search tool provided by Health Education England and NICE (National Institute for Health and Care Excellence). Searches were conducted until December 2020.

Aug 3, 2022

RNA diversity in human tissues mapped with emerging sequencing technology

Posted by in categories: biotech/medical, genetics

Research on RNA diversity in human tissues, led by scientists from the New York Genome Center and the Broad Institute, is described in a recent study published in Nature. When the genetic code is transcribed to RNA, one gene typically produces several different forms of RNA molecules, or transcripts, with different functions. While this phenomenon has been known for decades, the catalog of human transcripts has remained incomplete.

“Equipped with the latest sequencing technology, we were able to read segments of over one thousand nucleotides, compared to less than one hundred with standard approaches,” describes Dr. Beryl Cummings, one of the leaders of the project and formerly a postdoctoral fellow at the Broad Institute. “Importantly, we were able to do this at scale of over 80 samples from many tissues, which led to discovery of tens of thousands of novel transcripts,” she adds.

The researchers used their data to characterize how genetic and environmental differences can manifest in differences in the transcriptome. “Genetic differences between individuals can affect how genes are regulated. We were able to describe with a finer resolution than before how transcript structures are affected. This helps to understand molecular underpinnings of variants that contribute to disease risk,” explains Dr. Dafni Glinos from the New York Genome Center and co-first author of the study.