Toggle light / dark theme

Talking about E5.


Rats are also useful for aging research and for cooking ratatouille. But in all seriousness, take a look at this recent headline article — “We have the oldest living female Sprague Dawley rat,” said Dr Harold Katcher, a former biology professor at the University of Maryland, now chief scientific officer at Yuvan Research, a California-based startup.

So, Rejuvenation & rats. That’s what we’re talking about today, and how this rat has apparently become the longest living rat for its species following concentrated plasma injections from young blood plasma, and what this could mean for human therapeutics, along my perspectives. But, before we get there we must go back, back to the late 1950s and early 1960…to a time when The Sheekey Science Show did not exist, but when researchers, such as Clive McKay did, and these researchers were conducting a procedure called heterochronic parabiosis.

Find me on Twitter — https://twitter.com/EleanorSheekey.

Support the channel.

Cancer is not a uniform disease. Rather, cancer is a disease of phenotypic plasticity, meaning tumor cells can change from one form or function to another. This includes reverting to less mature states and losing their normal function, which can result in treatment resistance, or changing their cell type altogether, which facilitates metastasis.

In addition to direct changes in your DNA in cancer, a key driver of cancer progression is where and when your DNA is activated. If your DNA contains the “words” that spell out individual genes, then epigenetics is the “grammar” of your genome, telling those genes whether they should be turned on or off in a given tissue. Even though all tissues in the body have almost exactly the same DNA sequence, they can all carry out different functions because of chemical and structural modifications that change which genes are activated and how. This “epigenome” can be influenced by environmental exposures such as diet, adding a dimension to how researchers understand drivers of health beyond the DNA code inherited from your parents.

I’m a cancer researcher, and my laboratory at Johns Hopkins University studies how the differences among normal tissues are controlled by an epigenetic code, and how this code is disrupted in cancer. In our recently published review, colleague Andre Levchenko at Yale University and I describe a new approach to understanding cancer plasticity by combining epigenetics with mathematics. Specifically, we propose how the concept of stochasticity can shed light on why cancers metastasize and become resistant to treatments.

ATP, the compound essential for the functioning of photosynthetic organisms such as plants, algae, and cyanobacteria, is produced by an enzyme called “chloroplast ATP synthase” (CFoCF1). To control ATP production under varying light conditions, the enzyme uses a redox regulatory mechanism that modifies the ATP synthesis activity in response to changes in the redox state of cysteine (Cys) residues, which exist as dithiols under reducing (light) conditions, but forms a disulfide bond under oxidizing (dark) conditions. However, this mechanism has not yet been fully understood.

Now, in a study published in the Proceedings of the National Academy of Sciences, a team of researchers from Japan led by Prof. Toru Hisabori from Tokyo Institute of Technology (Tokyo Tech) has uncovered the role of the amino acid sequences present in CFoCF1, revealing how the regulates ATP production in photosynthetic organisms.

To understand how the conformation of the present in CFoCF1 contributes to the regulation mechanism, the researchers used the unicellular green alga, Chlamydomonas reinhardtii, to produce the enzyme. “By leveraging the powerful genetics of Chlamydomonas reinhardtii as a for photosynthesis, we conducted a comprehensive biochemical analysis of the CFoCF1 molecule,” explains Prof. Hisabori.

In a recent study published in Cell, researchers presented eight hallmarks of neurodegenerative diseases (NDDs), their in vivo biomarkers, and interactions to help categorize NDDs and specify patients within a specific NDD.

Despite being linked to rare genetic forms, all eight NDD hallmarks (cellular/molecular processes) also contribute to sporadic NDDs. In addition, they contribute to neuronal loss in preclinical (animal) models and NDD patients, manifesting as an altered molecular (hallmark) biomarker.

An NDD patient could have defects in multiple NDD hallmarks. However, the primary NDD hallmark depends on the NDD insult and the neuronal susceptibility and resilience, i.e., one’s ability to handle insults in the affected brain region.

Glioblastomas are the most common malignant tumors of the adult brain. They resist conventional treatment, including surgery, followed by radiation therapy and chemotherapy. Despite this armamentarium, glioblastomas inexorably recur.

In a new study published in Nature Communications, Isabelle Le Roux (CNRS) and her colleagues from the “Genetics and development of brain tumors” team at Paris Brain Institute have shown that the elimination of senescent cells, i.e., cells that have stopped dividing, can modify the tumor ecosystem and slow its progression. These results open up new avenues for treatment.

Glioblastoma, the most common adult brain cancer, affects 2 to 5 in 100,000 individuals. While the incidence of the disease is highest in those between 55 and 85 years old, it is increasing in all age groups. This effect can’t be attributed to improved diagnostic techniques alone, suggesting the influence of environmental factors hitherto unidentified.

Advancing Biomedical R&D & Clinical Development In Saudi Arabia — Dr. Abdelali Haoudi, Ph.D., Managing Director, Biotechnology Park, King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs.


Dr. Abdelali Haoudi, Ph.D. (https://kaimrc-biotech.org.sa/dr-abdelali-haoudi/) currently leads Strategy and Business Development functions, and is also Managing Director of the Biotechnology Park, at King Abdullah International Medical Research Center, at the Ministry of National Guard Health Affairs. He is also Distinguished Scholar at Harvard University-Boston Children’s Hospital.

Dr. Haoudi is an international Research & Development and Innovation Executive with over 25 years experience, having held several senior positions in Research and Development and Innovation. He has vast experience in science and technology policy development, strategy and business development, corporate development and international partnerships development.

Dr. Haoudi has held several senior and prestigious positions in the academia, government and private sectors globally, including North America, North Africa, Europe and Middle East. Some of the key positions include Founding Vice President for Research, Executive Director for Biomedical Research Institute, and Chairman, at the National Research Fund at Qatar Foundation.

Dr. Haoudi was also Research Professor of cancer and infectious diseases at the University of Virginia and Eastern Virginia Medical School and a fellow of the US National Institutes of Health (NIH). He has held several other positions in elite research and education institutions including Visiting Professor at Harvard Medical School (USA) and a fellow at Institute Pasteur (France).