Menu

Blog

Archive for the ‘genetics’ category: Page 169

Oct 4, 2022

Scientists Show Transmission of Epigenetic Memory Across Multiple Generations

Posted by in categories: biotech/medical, genetics

Changing the epigenetic marks on chromosomes results in altered gene expression in offspring and in grandoffspring, demonstrating ‘transgenerational epigenetic inheritance.’

Without changing the genetic code in the DNA

DNA, or deoxyribonucleic acid, is a molecule composed of two long strands of nucleotides that coil around each other to form a double helix. It is the hereditary material in humans and almost all other organisms that carries genetic instructions for development, functioning, growth, and reproduction. Nearly every cell in a person’s body has the same DNA. Most DNA is located in the cell nucleus (where it is called nuclear DNA), but a small amount of DNA can also be found in the mitochondria (where it is called mitochondrial DNA or mtDNA).

Oct 4, 2022

A breakthrough in metastasis could lead to better cancer treatments

Posted by in categories: biotech/medical, genetics

Understanding how metastasis works.

In the universal fight against cancer, metastasis is one of the most unpleasant factors that could make matters even worse; and there is still much to comprehend in the spread process. Cambridge scientists might have unveiled a breakthrough in understanding how metastasis works.

The research has been published in the journal Nature Genetics.

Continue reading “A breakthrough in metastasis could lead to better cancer treatments” »

Oct 4, 2022

Higher body temperature alters key protein in autoinflammatory disorder

Posted by in categories: biotech/medical, genetics

A new study from the Garvan Institute of Medical Research shows how rises in core body temperature may trigger the inflammatory flares in people with a rare genetic autoinflammatory disease.

The recessive disorder, called mevalonate kinase deficiency (MKD), is caused by mutations in the gene for mevalonate kinase, an essential present in all cells in the body. Lack of this enzyme leads to a build-up of abnormal proteins, which causes cells of the immune system to malfunction and trigger inflammation.

Continue reading “Higher body temperature alters key protein in autoinflammatory disorder” »

Oct 3, 2022

What Can Brain Scans Really Tell Us?

Posted by in categories: biotech/medical, finance, genetics, neuroscience, robotics/AI, security

Since the infancy of functional magnetic resonance imaging (fMRI) in 1990, people have been fascinated by the potential for brain scans to unlock the mysteries of the human mind, our behaviors and beliefs. Many breathtaking applications for brain scans have been devised, but hype often exceeds what empirical science can deliver. It’s time to ask: What’s the big picture of neuroscience and what are the limitations of brain scans?

The specific aims of any research endeavor depend on who you ask and what funding agency is involved, says Michael Spezio, associate professor of psychology, data science and neuroscience at Scripps College. Some people believe neuroscience has the potential to explain human cognition and behavior as a fully mechanistic process, ultimately debunking an “illusion of free will.” Not all neuroscientists agree that free will is a myth, but it’s a strong current these days. Neuroscience also has applications in finance, artificial intelligence, weapons research and national security.

For other researchers and funders, the specific aim of neuroscience involves focusing on medical imaging, genetics, the study of proteins (proteomics) and the study of neural connections (connectomics). As caring persons who are biological, neurological, physical, social and spiritual, we can use neuroscience to think carefully and understand our humanity and possible ways to escape some of the traps we’ve built for ourselves, says Spezio. Also, brain scans can enhance research into spirituality, mindfulness and theory of mind – the awareness of emotions, values, empathy, beliefs, intentions and mental states to explain or predict others’ behavior.

Oct 2, 2022

Scientists sequence the world’s largest pangenome to help unlock genetic mysteries behind finer silk

Posted by in categories: biotech/medical, genetics

BGI Genomics, in collaboration with Southwest University, the State Key Laboratory of Silkworm Genome Biology, and other partners, has constructed a high-resolution pangenome dataset representing almost the entire genomic content in a silkworm.

This research paper, providing genetic insights into artificial selection (domestication and breeding) and ecological adaptation, was published on September 24 in Nature Communications.

Previously, due to the scarcity of wild silkworms and technical limitations of former studies, many trait-associated sites were missing. This is the first research ever to digitize silkworm gene pool and create a “digital silkworm”, greatly facilitating functional genomic research, promoting precise breeding, and thus enabling additional use cases.

Oct 2, 2022

Biohacking The Oral Microbiome: Test #2

Posted by in categories: bioengineering, biotech/medical, genetics

Join us on Patreon!
https://www.patreon.com/MichaelLustgartenPhD

Bristle Discount Link (Oral microbiome quantification):
ConquerAging15
https://www.bmq30trk.com/4FL3LK/GTSC3/

Continue reading “Biohacking The Oral Microbiome: Test #2” »

Oct 1, 2022

George Church on the state of aging research — present and future (videoclip)

Posted by in categories: genetics, life extension

Excerpt from an episode of Longevity by Design, hosted by Dr. Gil Blander and Ashley Reaver, MS, RD, CSSD, who were joined by Dr. George Church, Professor of Genetics at Harvard Medical School.

To watch the entire conversation clic here: https://youtu.be/6XnXeVS1m2U

Sep 30, 2022

Chernobyl black frogs reveal evolution in action

Posted by in categories: biological, evolution, genetics, nuclear energy

The accident at reactor four of the Chernobyl Nuclear Power Plant in 1986 generated the largest release of radioactive material into the environment in human history. The impact of the acute exposure to high doses of radiation was severe for the environment and the human population. But more than three decades after the accident, Chernobyl has become one of the largest nature reserves in Europe. A diverse range of endangered species finds refuge there today, including bears, wolves, and lynxes.

Radiation can damage the genetic material of living organisms and generate undesirable mutations. However, one of the most interesting research topics in Chernobyl is trying to detect if some species are actually adapting to live with radiation. As with other pollutants, radiation could be a very strong selective factor, favoring organisms with mechanisms that increase their survival in areas contaminated with radioactive substances.

Sep 30, 2022

Newly recognised species of sloth has a head like a coconut

Posted by in category: genetics

The world has one more sloth species in it than previously thought. Maned sloths live in a small belt of forest in Brazil and an analysis now suggests those in the south are a different species from those found farther north.

Three-toed sloths were conventionally thought to be divided into four species. One — the maned sloth (Bradypus torquatus) — sports a thatch of coarse, brown hair, making the head resemble a husked coconut.


Maned sloths were thought to be one species but a genetic and physical analysis suggests there are actually two.

Continue reading “Newly recognised species of sloth has a head like a coconut” »

Sep 30, 2022

Mouse study suggests genetics of longevity are influenced by both gender and age

Posted by in categories: biotech/medical, genetics, life extension

A team of researchers affiliated with several institutions in Switzerland and the U.S. reports evidence that the genetics of longevity are influenced by both gender and age. In their paper published in the journal Science, the group describes their study of aging in mice and humans. João Pedro de Magalhães, with the University of Birmingham, has published a Perspective piece in the same journal issue outlining the technical challenges to understanding how aging works and the work done by the team on this new effort.

Scientists have been studying the for many years but still do not have a good explanation for why organisms age and why some live longer than others. In this new effort, the researchers wondered if something in the genome plays a role in how long a species lives on average.

Noting that another team had created a very large dataset of information regarding aging in nearly 3,000 mice, the researchers found that it also contained . After obtaining access to the database, they analyzed that genetic information—more specifically, they conducted quantitative trait locus mapping. They found multiple loci that they could associate with longevity, some that were specific to one or the other gender. They also found that mice who weighed more during their early years or who had small litter sizes tended to die younger. They suggest the same that were associated with aging may have also played a role in the other two traits. The researchers also found that the aging-related genes they isolated appeared to remain dormant until the latter stages of a given individual’s life.