Menu

Blog

Archive for the ‘genetics’ category: Page 109

May 18, 2023

Genetic research sheds light on what the earliest animals looked like

Posted by in categories: food, genetics

For more than a century, biologists have wondered what the earliest animals were like when they first arose in the ancient oceans more than half a billion years ago.

Searching among today’s most primitive-looking animals for the earliest branch of the animal tree of life, scientists gradually narrowed the possibilities down to two groups: sponges, which spend their entire adult lives in one spot, filtering food from seawater; and comb jellies, voracious predators that oar their way through the world’s oceans in search of food.

In a new study published this week in the journal Nature, researchers use a novel approach based on chromosome structure to come up with a definitive answer: Comb jellies, or ctenophores (pronounced teen’-a-fores), were the first lineage to branch off from the animal tree. Sponges were next, followed by the diversification of all other animals, including the lineage leading to humans.

May 17, 2023

Researchers reveal DNA repair mechanism

Posted by in categories: biotech/medical, genetics, health

A new study adds to an emerging, radically new picture of how bacterial cells continually repair faulty sections of their DNA.

Published online May 16 in the journal Cell, the report describes the behind a DNA repair pathway that counters the mistaken inclusion of a certain type of molecular building block, ribonucleotides, into genetic codes. Such mistakes are frequent in code-copying process in bacteria and other organisms. Given that ribonucleotide misincorporation can result in detrimental DNA code changes (mutations) and DNA breaks, all organisms have evolved to have a DNA repair pathway called ribonucleotide excision repair (RER) that quickly fixes such errors.

Last year a team led by Evgeny Nudler, Ph.D., the Julie Wilson Anderson Professor in the Department of Biochemistry and Molecular Pharmacology at NYU Langone Health, published two analyses of DNA repair in living E. coli cells. They found that most of the repair of certain types of DNA damage (bulky lesions), such as those caused by UV irradiation, can occur because damaged code sections have first been identified by a called RNA . RNA polymerase motors down the DNA chain, reading the code of DNA “letters” as it transcribes instructions into RNA molecules, which then direct protein building.

May 16, 2023

NewLimit secures $40 million Series A to accelerate cellular reprogramming

Posted by in categories: biotech/medical, genetics, life extension, neuroscience

NewLimit, a company working towards the radical extension of human healthspan using epigenetic reprogramming has announced it has secured $40 million in Series A funding from prominent investors including Dimension, Founders Fund, and Kleiner Perkins.

This investment further bolsters the company’s belief that therapies to delay, halt or even reverse aging can be found through the exploration of epigenetic reprogramming. With a strong belief that their innovative approach can also address various age-related diseases, NewLimit aims to revolutionize the field of aging biology and pave the way for transformative advancements in healthcare.

Longevity. Technology: Epigenetic reprogramming is an emerging but exciting field of geroscience. It involves the identification of specific sets of transcription factors that can induce changes in gene expression and cellular behavior, effectively reversing or modifying the epigenetic markers associated with aging. This approach offers a unique opportunity to rejuvenate cells and tissues, potentially slowing down or even reversing the effects of aging and its related diseases. NewLimit says that while its products are designed to treat aging itself, the company also believes “these products could treat or prevent many diseases associated with aging, including fibrosis, infectious disease, and neurodegenerative disease.”

May 15, 2023

Groundbreaking: The clearest snapshot of human genomic diversity ever taken

Posted by in categories: biotech/medical, evolution, genetics, health

Scientists with the Human Pangenome Reference Consortium have made groundbreaking progress in characterizing the fraction of human DNA that varies between individuals. They have assembled genomic sequences of 47 people from around the world into a so-called pangenome in which more than 99 percent of each sequence is rendered with high accuracy.

For two decades, scientists have relied on the human reference genome as a standard to compare against other genetic data. Thanks to this reference genome, it was possible to identify genes implicated in specific diseases and trace the evolution of human traits, among other things.

However, it has always been a flawed tool: 70% of its data came from a single man of predominantly African-European background whose DNA was sequenced during the Human Genome Project. Hence, it can reveal very little about individuals on this planet who are different from each other, creating an inherent bias in biomedical data believed to be responsible for some of the health disparities affecting patients today.

May 14, 2023

The Pangenome Breakthrough: A Crystal Clear Image of Human Genomic Diversity

Posted by in categories: biotech/medical, evolution, genetics, health

In a major advance, scientists have assembled genomic sequences of 47 people from diverse backgrounds to create a pangenome, which offers a more accurate representation of human genetic diversity than the existing reference genome. This new pangenome will help researchers refine their understanding of the link between genes and diseases, and could ultimately help address health disparities.

For more than 20 years, scientists have relied on the human reference genome, a consensus genetic sequence, as a standard against which to compare other genetic data. Used in countless studies, the reference genome has made it possible to identify genes implicated in specific diseases and trace the evolution of human traits, among other things.

But it has always been a flawed tool. One of its biggest problems is that about 70 percent of its data came from a single man of predominantly African-European background whose DNA.

May 14, 2023

It’s Confirmed: Babies With DNA From Three People Are Now Being Born in The UK

Posted by in categories: biotech/medical, genetics, government

Eight years after the technology was approved by government authorities, it can be reported that at least one child with DNA from three different people has been born to parents in the United Kingdom.

The announcement isn’t exactly ‘new’ knowledge, but reporters at The Guardian were able to prompt an official confirmation with a freedom of information request.

The University of Newcastle in collaboration with the Newcastle Fertility Center are pioneers in what is known as mitochondrial replacement therapy (MRT), a special form of in vitro fertilization (IVF) designed to prevent severe genetic diseases in future babies.

May 14, 2023

This Longevity Study Across 5 Species Found a New Pathway to Reverse Aging

Posted by in categories: biotech/medical, genetics, life extension

A new study in Nature hunted down another piece to the aging puzzle. In five species across the evolutionary scale—worms, flies, mice, rats, and humans—the team honed in on a critical molecular process that powers every single cell inside the body and degrades with age.

The process, called transcription, is the first step in turning our genetic material into proteins. Here, DNA letters are reworked into a “messenger” called RNA, which then shuttles the information to other parts of the cell to make proteins.

Scientists have long suspected that transcription may go awry with aging, but the new study offers proof that it doesn’t—with a twist. In all five of the species tested, as the organism grew older the process surprisingly sped up. But like trying to type faster when blindfolded, error rates also shot up.

May 14, 2023

Vitamin B6: Did It Increase NAD? (Test Results)

Posted by in categories: biotech/medical, genetics

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links:
NAD+ Quantification: https://www.jinfiniti.com/intracellular-nad-test/
Use Code: ConquerAging At Checkout.

Continue reading “Vitamin B6: Did It Increase NAD? (Test Results)” »

May 13, 2023

Researchers Reveal the ‘Pangenome,’ a More Diverse Look at Human DNA

Posted by in categories: biotech/medical, genetics

The new version of the human genome could lead to better diagnostics and treatment of genetic diseases.

May 12, 2023

High-Resolution Image of the Human Retina Reveals Stunning Details

Posted by in category: genetics

High spatial and temporal resolution

The scientists performed all these analyses on organoids that were of different ages and thus at different stages of development. In this way, they were able to create a time series of images and genetic information that describes the entire 39-week development of retinal organoids.