Toggle light / dark theme

Gut microbes produce compounds that prime immune cells to destroy harmful viruses in the brain and nervous system, according to a mouse study published today in eLife.

The findings suggest that having healthy and diverse microbiota is essential for quickly clearing viruses in the nervous system to prevent paralysis and other risks associated with diseases such as multiple sclerosis.

A condition that causes progressive damage to nerve cells, multiple sclerosis has become more common over the past several decades. Viral infections in the brain or spinal cord are thought to trigger this disease. Some scientists believe that changes in the way we eat, increased sanitation or growing antibiotic use may be causing detrimental changes in the that live within the human body, potentially increasing the risk of multiple sclerosis and other related diseases.

Is comprehensive damage repair feasible? A debate at Undoing Aging 2019 between Vadim Gladyshev, Harvard Medical School and Aubrey de Grey, SENS Research Foundation.

PLEASE LIKE & SUBSCRIBE FOR MORE FROM MY NMN CHANNEL

Vadim N. Gladyshev is a professor at Harvard Medical School, Brigham and Women’s Hospital and an expert and pioneer in antioxidant/redox biology. He is known for his characterization of the human selenoproteinencoded by 25 genes. He has conducted studies on whether organisms can acquire cellular damage from their food;the role selenium plays as a micro-nutrient with significant health benefits;In 2013 he won the NIH Pioneer Award.

Aubrey David Nicholas Jasper de Grey is an English author and biomedical gerontologist. He is the Chief Science Officer of the SENS Research Foundation and VP of New Technology Discovery at AgeX Therapeutics, Inc.

Acknowledgements:

Source: https://www.youtube.com/watch?v=T3rI_ysqB8I&feature=youtu.be

A new study, led by Dr. Dan Knights from the University of Minnesota (USA), has found that the gut microbiome responds more to particular foods than to combinations of nutrients and that microbiome responses to diet are personalized.

The researchers studied the impact of habitual diet on the gut microbiome in 34 subjects for 17 consecutive days. Both the fecal microbiome and the participants’ diet were sampled every day through shotgun metagenomic sequencing and daily 24-hour dietary records, respectively.

Although the relative abundance of gut microbial species showed a high variation within and between individuals, functional traits tended to remain stable across individuals. In contrast, a specific group of functions related to stress response, the conversion of nitrate to nitrogen and the conversion of formate to methane showed a high interindividual variability that did not correlate with nutrient and food intake.

Think of DNA and chances are the double helix structure comes to mind, but that’s only one piece of the puzzle. Another major part is mitochondrial DNA, and in plants that’s even more important – and so complex that scientists haven’t yet been able to edit the genes in there. Now a team of Japanese researchers has managed to do just that, which could help improve the genetic diversity of crops.

A vegetable-picking robot that uses machine learning to identify and harvest a commonplace, but challenging, agricultural crop has been developed by engineers.

The ‘Vegebot’, developed by a team at the University of Cambridge, was initially trained to recognise and harvest iceberg lettuce in a lab setting. It has now been successfully tested in a variety of field conditions in cooperation with G’s Growers, a local fruit and vegetable co-operative.

Although the prototype is nowhere near as fast or efficient as a human worker, it demonstrates how the use of robotics in agriculture might be expanded, even for like iceberg lettuce which are particularly challenging to harvest mechanically. The results are published in The Journal of Field Robotics.