Toggle light / dark theme

Secretive Seattle startup Picnic unveils pizza-making robot — here’s how it delivers 300 pies/hour

After three years of quietly toiling away on a robotic food system, Seattle startup Picnic has emerged from stealth mode with a system that assembles custom pizzas with little human intervention.

Picnic — previously known as Otto Robotics and Vivid Robotics — is the latest entrant in a cohort of startups and industry giants trying to find ways to automate restaurant kitchens in the face of slim margins and labor shortages. And its journey here wasn’t easy.

“Food is hard. It’s highly variable,” said Picnic CEO Clayton Wood. “We learned a lot about food science in the process of developing the system.”

DNA spells tomorrow: how DNA tech will impact our world

When the structure of DNA was elucidated in 1953, an unimaginable world of possibilities was opened. But we couldn’t even begin to dream about how we would go about using such powerful knowledge. Thirty years later, PCR — the process to replicate DNA in the lab — was developed, and innovation exploded. In 2001 — nearly twenty years ago — the first full human genome was sequenced and published.

The information we’ve uncovered through DNA is enabling us to explore and develop solutions for a variety of problems, from how to mimic human disease in animal models to finding new treatments and cures for devastating diseases such as cancer and Alzheimer’s.

Our ability to engineer biology is making DNA even more powerful. We are building upon the blueprint that was already there, strengthening it, giving it new and improved functions, and leveraging its characteristics to do useful things for us. Perfect examples include engineering the genomes of T cells to turn them into highly specific cancer fighters or modifying bacteria to produce useful products like insulin, food ingredients, or bioplastics. We are even beginning to use DNA to store information, perhaps one day replacing the physical hard drive.

Top 21 Anti Inflammatory Foods You Need To Add To Your Diet

Great Diet Information: #Longevity

Inflammation is also called the silent killer. It is silent because as your body struggles with inflammation, it also does all it can to maintain balance. This means that symptoms are sometimes hard to decipher and can even be hidden for some time.

Inflammation can be a good thing

A little bit of inflammation is a good thing, a lot can be extremely dangerous. When we are injured or sick, the immune system jump into gear and brings an army of white blood cells to the area of concern by increasing blood flow. For instance, when you get a cut or a scrape it generally becomes puffy, red and hot. This is inflammation – more white blood cells have arrived to handle the situation. Acute inflammation is how the body responds to foreign pathogens – it protects us from harm.

Meet Eight Tech Titans Investing In Synthetic Biology

“DNA is like a computer program but far, far more advanced than any software ever created.” Bill Gates wrote this in 1995, long before synthetic biology – a scientific discipline focused on reading, writing, and editing DNA – was being harnessed to program living cells. Today, the cost to order a custom DNA sequence has fallen faster than Moore’s law; perhaps that’s why the Microsoft founder is turning a significant part of his attention, and wallet, towards this exciting field.

Bill Gates is not the only tech founder billionaire that sees a parallel between bits and biology, either. Many other tech founders – the same people that made their money programming 1s and 0s – are now investing in biotech founders poised to make their own fortunes by programming A’s, T’s, G’s and C’s.

The industry has raised more than $12.3B in the last 10 years and last year, 98 synthetic biology companies collectively raised $3.8 billion, compared to just under $400 million total invested less than a decade ago. Synthetic biology companies are disrupting nearly every industry, from agriculture to medicine to cell-based meats. Engineered microorganisms are even being used to produce more sustainable fabrics and manufacture biofuels from recycled carbon emissions.

Can We Redesign The Modern City With Synthetic Biology? Could We Grow Our Houses Instead Of Building Them?

Imagine waking up every morning in a house that is just as alive as you are. With synthetic biology, your future home could be a living, breathing marvel of nature and biotechnology. Yes, it’s a bold ambition. But this kind of visionary thinking could be the key to achieving sustainability for modern cities.

Our current homes and cities are severely outdated. Dr. Rachel Armstrong, a synthetic biologist and experimental architect, says, “All our current buildings have something in common: they’re built using Victorian technologies.” Traditional design, manufacturing, and construction processes demand huge amounts of energy and resources, but the resulting buildings give nothing back. To make our future sustainable, we need dynamic structures that give as much as they take. We need to build with nature, not against it.

In nature, everything is connected. For the world’s tallest trees—the California redwoods— their lives depend on their connection to each other as well as on a host of symbiotic organisms. Winds and rain batter the California coast, so redwoods weave their roots together for stability, creating networks that can stretch hundreds of miles. The rains also leach nutrients from the soil. But fungi fill the shortage by breaking down dead organic matter into food for the living. A secondary network of mycelia—the root-like structures of the fungi—entwine with the tree roots to transport nutrients, water, and chemical communications throughout the forest. What if our future cities functioned like these symbiotic networks? What if our future homes were alive?

This Pet Feeder Uses Facial Recognition So the Right Pet Gets the Treats

If you have more than one pet, then you know how chaotic feeding time can be. Italian company Volta is hoping to make the process just a little bit easier with its AI-driven pet feeder, Mookkie, which visually recognizes each individual cat or dog and places their prepared food at each pet’s disposal.

The Mookkie, winner of the Innovation Award in the Smart Home category at CES 2019, features a wide-angle camera that deploys logic similar to the “face-unlock” feature of smartphones.

Mookkie records images of the animal for which the food is intended, then deploys operations necessary for visual recognition, allowing the product to visually identify the presence of the pet and activate a door opening to allow access to food.

World’s richest man cuts health benefits for 1,900 Whole Foods workers

Jeff Bezos, the world’s richest man, is cutting health benefits for part-time workers at Whole Foods. The move will leave 1,900 people without health insurance.

The cuts don’t affect full-time employees, but will hurt those who work around 20 hours a week.

“I am in shock,” said one employee, according to Salon. “I’ve worked here 15 years. This is why I keep the job — because of my benefits.”

Navigating Water Shortages with Decentralized Water Control System and Irrigation

Rural communities are often built on agriculture and livestock. That means they’re also dependent upon a strong irrigation system – a potential weakness as the global water crisis grows. To more efficiently manage and coordinate the use of a scarce water supply in agricultural communities, a team from the Polytechnic University of Madrid proposed a blockchain-based automatic water control system.

“We investigated how blockchain technologies can be used to solve the problem of user competition for scarce resources in communities,” said Borja Bordel, the project’s lead investigator. “We particularize the problem to the irrigation communities, where independent users must trust a system that automates a fair and trustworthy distribution of the available water resources, according to an individual quota set by the community and the consumption forecasts of its users.”

Rules are paramount for the proposed system and must be established upfront by the community of users. In a prosumer environment, users establish regulations for their individual and community water quotas. Those regulations are then taken by a transformation engine and are built, compiled, and deployed. A simple infrastructure of common valves and pumps are complemented by interactive electronic devices and allow a SmartContract to oversee decision-making and control algorithms, as well as the state of the water sources.