Toggle light / dark theme

A comprehensive review of the economic impacts of nature-based solutions (NbS), led by the University of Oxford and published this week in PLOS Climate, concludes they can unlock prosperity by boosting local economies, increasing agricultural productivity and creating jobs.

The acetate would then be used to feed plants that are grown hydroponically. The method could also be used to grow other food-producing organisms, since acetate is naturally used by mushrooms, yeast, and algae.

“The whole point of this new process to try to boost the efficiency of photosynthesis,” says senior author Feng Jiao, an electrochemist at Washington University in St. Louis. “Right now, we are at about 4% efficiency, which is already four times higher than for photosynthesis, and because everything is more efficient with this method, the CO2 footprint associated with the production of food becomes much smaller.”

To genetically engineer acetate-eating plants, the researchers are taking advantage of a metabolic pathway that germinating plants use to break down food stored in their seeds. This pathway is switched off once plants become capable of photosynthesis, but switching it back on would enable them to use acetate as a source of energy and carbon.

There are rare cells in the gut called enteroendocrine cells (EECs) that could be manipulated in a variety of ways to detect or treat disease.


The trillions of microbes in our gastrointestinal tract, known as the gut microbiome, are crucial to the body; the gut microbiome aids in digestion, nutrient absorption, and influences our health in different ways. But the body also has to be protected from all of those microbes, which are kept behind a tight barrier. But if the intestinal barrier is dysfunctional, or leaky, serious problems can arise.

There are cells in the gut called enteroendocrine cells (EECs) that can generate hormones, which may have a variety of effects on the body. EECs release hormones in response to cues like food intake and stomach stretching. The hormones can then influence physiological processes related to digestion or appetite. Scientists have now found receptors on EECs that control hormone release. It may one day be possible to alter these receptors to treat disease. The research has been reported in Science.

Can water be harvested from the air to help mitigate water scarcity across the globe? This is what a recent study published in Technologies hopes to address as a team of researchers from The Ohio State University have developed a novel device that can provide faster and more efficient methods for harvesting water from the air compared to longstanding devices, also called atmospheric water harvesting (AWH). This study holds the potential to help regions around the world mitigate the need for access to clean drinking water, as approximately 2 billion people suffer from lack of clean drinking water in their respective regions.

“You can survive three minutes without air, three weeks without food, but only three days without water,” said Dr. John LaRocco, who is a research scientist in the Department of Psychiatry and Behavioral Sciences at The Ohio State University and lead author of the study. “But with it, you can begin to solve a lot of problems, like national security, mental health or sanitation, just by improving the accessibility of clean drinking water.”

For the device, the researchers designed a nickel titanium-based dehumidifier with temperature-sensitive materials, resulting in harvesting greater amounts of water at 0.18 milliliters per watts per hour compared to 0.16 milliliters per watts per hour for traditional harvesters after 30 minutes. Additionally, the temperature-sensitive materials help regulate the amount of heat used during the harvesting process, resulting in approximately half the power needed to use the harvester. Finally, the reduced size of the harvester provides mobility to be used anywhere in the world, whereas traditional harvesters tend to be large and require significant amounts of energy to operate.

Plastic pollution is everywhere, and a good amount of it is composed of polyethylene terephthalate (PET). This polymer is used to make bottles, containers and even clothing. Now, researchers report in Environmental Science & Technology that they have discovered an enzyme that breaks apart PET in a rather unusual place: microbes living in sewage sludge. The enzyme could be used by wastewater treatment plants to break apart microplastic particles and upcycle plastic waste.

Microplastics are becoming increasingly prevalent in places ranging from remote oceans to inside bodies, so it shouldn’t be a surprise that they appear in wastewater as well.

However, the particles are so tiny that they can slip through water treatment purification processes and end up in the effluent that is reintroduced to the environment. But effluent also contains microorganisms that like to eat those plastic particles, including Comamonas testosteroni—so named because it degrades sterols like testosterone.

If you’re ever faced with trying to pick up a grain of rice with a pair of chopsticks, spare a thought for the scientists behind this latest innovation, which has been called “a medical breakthrough on the verge of happening.” They’ve painstakingly built a soft robot with the capacity to carry different types of drugs through the body. It’s the size of a grain of rice, and can be driven to various internal targets via magnetic fields.

Researchers in the School of Mechanical and Aerospace Engineering (MAE) at Nanyang Technological University, Singapore (NTU Singapore), have built on earlier work to create a grain-sized soft robot that can enter the body and be controlled by magnetic fields to travel to a specific target. Once there, it can quickly or slowly release the medication it has stored in its tiny frame.

The reason? While sunny regions naturally provide enough light to grow crops, areas with colder winters often need grow lights and greenhouses part of the year. This increases energy consumption, logistical headaches, and ultimately, food costs.

In their paper, Jiao and colleagues argue for a new method that could dramatically revamp farming practices to reduce land use and greenhouse gas emissions.

Dubbed “electro-agriculture,” the approach uses solar panels to trigger a chemical reaction that turns ambient CO2 into an energy source called acetate. Certain mushrooms, yeast, and algae already consume acetate as food. With a slight genetic tweak, we could also engineer other common foods such as grains, tomatoes, or lettuce to consume acetate.

1GITEX Global 2024 and IROS 2024 became true gateways to the future of technology, bringing together the most advanced innovations in artificial intelligence, robotics, and transportation under one roof. At the forefront of GITEX was the unique Nissan Hyperforce concept, an electric vehicle with an incredible 1,360 horsepower, capable of accelerating from 0 to 100 km/h in just 2 seconds. This electric supercar not only stunned with its speed but also with its futuristic design, reminiscent of the iconic Batmobile. With its advanced driving modes, R and GT, drivers can switch between a sporty and comfortable driving experience.

👉For business inquiries: [email protected].
✅ Instagram: / pro_robots.

0:00 Exhibitions in the United Arab Emirates.
0:34 GITEX GLOBAL 2024
0:47 Nissan Hyper Force supercar.
1:43 Italdesign’s Quintessenza concept car.
2:39 Ameca robot.
3:15 Robot bartender.
3:38 Airscooter by Zapata.
4:13 Autonomous Patrol of the Future by Dubai Police.
5:09 Tesla Cybertruck.
6:01 All-terrain delivery vehicles from Mobinn.
6:20 Cadillac Electric Flyer.
7:03 Drones by Multi Level Group.
7:32 Xpeng Aeroht Flying Car.
8:18 New humanoid robot Kepler.
8:42 ZainTECH Drones.
9:04 Robo-charging electric cars.
9:43 Odigo robot with AI
10:26 IROS 2024
11:02 Obstacle course for four-legged robots.
11:41 Robofootball on IROS 2024
12:32 High Torque Robotics.
13:03 Unitree robots.
13:39 Nimble Direct Drive Robots.
14:16 Elephant Robotics.
14:47 Humanoid robots on display.
15:14 DexNex teleoperated system.
15:47 Hubot robot.

In addition, GITEX 2024 showcased the latest flying car concepts. Among them was a model capable of unfolding its blades and taking off in just two minutes, making it the perfect vehicle for fast, seamless travel both on the road and in the sky. The exhibition also featured other cutting-edge innovations, such as autonomous patrol cars equipped with drones and robotic bartenders that serve drinks without lines or fuss.