A terrifying glimpse at one potential fate of our Milky Way galaxy has come to light thanks to the discovery of a cosmic anomaly that challenges our understanding of the universe.
An international team of astronomers led by CHRIST University, Bangalore, found that a massive spiral galaxy almost 1 billion light-years away from Earth harbors a supermassive black hole billions of times the sun’s mass which is powering colossal radio jets stretching 6 million light-years across.
That is one of the largest known for any spiral galaxy and upends conventional wisdom of galaxy evolution, because such powerful jets are almost exclusively found in elliptical galaxies, not spirals.
The Dark Energy Spectroscopic Instrument (DESI) is mapping millions of celestial objects to better understand dark energy—the mysterious driver of our universe’s accelerating expansion. Today, the DESI collaboration released a new collection of data for anyone in the world to investigate.
The dataset is the largest of its kind, with information on 18.7 million objects: roughly 4 million stars, 13.1 million galaxies, and 1.6 million quasars (extremely bright but distant objects powered by supermassive black holes at their cores).
While the experiment’s main mission is illuminating dark energy, DESI’s Data Release 1 (DR1) could yield discoveries in other areas of astrophysics, such as the evolution of galaxies and black holes, the nature of dark matter, and the structure of the Milky Way.
Whole-gene sequencing of microdissected gastric glands from individuals with and without gastric cancer reveals distinct patterns of somatic mutations and provides insights into influences on the somatic evolution of the gastric epithelium.
The heliosphere, a cosmic bubble formed by the Sun, protects our solar system from interstellar threats and influences life’s evolution. Despite its vital role, its true shape remains a puzzle, with data from Voyager missions hinting at its complexities. Upcoming interstellar probes aim to uncover more about this mysterious region.
The Sun does more than just warm the Earth, making it habitable for people and animals. It also shapes a vast region of space. This region, known as the heliosphere, extends more than a hundred times the distance between the Sun and Earth, influencing everything within it.
As a star, the Sun constantly emits a flow of charged particles called the solar wind, a stream of energized plasma.
“Our hope with this kind of research is to understand our own solar system, life, and ourselves in comparison to other exoplanetary systems, so we can contextualize our existence,” said William Balmer.
What can carbon dioxide in an exoplanet’s atmosphere teach us about its formation and evolution? This is what a recent study published in The Astrophysical Journal hopes to address as an international team of researchers made the first direct images of carbon dioxide in the atmospheres of two exoplanetary systems. This study has the potential to help researchers better understand the formation and evolution of exoplanet atmospheres and how this could lead to finding life as we know it, or even as we don’t know it.
For the study, the researchers used NASA’s James Webb Space Telescope (JWST) to analyze the atmospheres of exoplanets residing in the systems HR 8799 and 51 Eridani (51 Eri) with the direct imaging method. The HR 8,799 system is located approximately 135 light-years from Earth and hosts four known exoplanets whose masses range from five to nine times of Jupiter, and the 51 Eridani system is located approximately 97 light-years from Earth and hosts one known exoplanet whose mass is approximately four times of Jupiter. Both systems are very young compared to our solar system at approximately 4.6 billion years old, with HR 8,799 and 51 Eridani being approximately 30 million and 23 million years old, respectively.
“We can hardly wait for the flyby because, as of now, Donaldjohanson’s characteristics appear very distinct from Bennu and Ryugu. Yet, we may uncover unexpected connections,” said Dr. Simone Marchi.
How old is asteroid (52246) Donaldjohanson (DJ), which is about to be studied by NASA’s Lucy spacecraft in an upcoming flyby on April 20, 2025? This is what a recent study published in The Planetary Science Journal hopes to address as an international team of researchers conducted a pre-flyby analysis of DJ with the goal of ascertaining the asteroid’s potential age. This study has the potential to help scientists better understand the formation and evolution of asteroids throughout the solar system, and specifically the main asteroid belt, which is where DJ orbits.
For the study, the researchers used ground-based telescopes and instruments to analyze the size, shape, and composition of DJ with the goal of ascertaining its relative age. For context, relative age indicates an object’s approximate age based on observational and data analysis, which contrasts an object’s absolute age that is determined from laboratory analysis with samples. Lucy will only be conducting a flyby and will not be returning samples to Earth.
In the end, the researchers not only discovered that DJ has elongated shape with estimates putting its approximate age at 150 million years old and formed when a larger asteroid broke apart. This upcoming flyby comes after the Hayabusa2 and OSIRIS-REX missions visited asteroids Ryugu and Bennu, respectively, with DJ hypothesized to orbit in the approximate regions where both Ryugu and Bennu formed.
In this Review, Ahmad et al. examine how antibiotics influence bacterial metabolism and how metabolism, in turn, affects drug efficacy and the emergence and evolution of antimicrobial resistance. They also explore the role of bacterial metabolism in clinical contexts and the potential for metabolic-based therapies to improve antibacterial treatment.
Astrophysicists have once again enriched our knowledge of the cosmos with a new discovery: two small planets orbiting TOI-1453. Located at around 250 light years from Earth in the Draco constellation, this star is part of a binary system (a pair of stars orbiting each other) and is slightly cooler and smaller than our sun. This discovery, published in the journal Astronomy & Astrophysics, paves the way for future atmospheric studies to better understand these types of planets.
Around this star are two planets, a super-Earth and a sub-Neptune. These are types of planets that are absent from our own solar system, but paradoxically constitute the most common classes of planet in the Milky Way. This discovery sheds light on a planetary configuration that could provide valuable clues to the formation and evolution of planets.
Using data from NASA’s Transiting Exoplanet Survey Satellite (TESS) and the HARPS-N high-resolution spectrograph, the researchers were able to identify TOI-1453 b and TOI-1453 c, the two exoplanets orbiting TOI-1453.
DNA holds the key to understanding life itself… From genetics and the human genome to gene editing, it shapes our health, evolution, and future… Discover how CRISPR, forensic science, and genetic engineering are transforming medicine… Explore the mysteries of ancient DNA, the role of the microbiome, and the promise of gene therapy… Personalized medicine is revolutionizing healthcare, allowing treatments tailored to our genetic code… Learn how hereditary diseases are being decoded and cured through biotechnology and DNA sequencing… The future of medicine depends on genetic research, but genetic ethics raise profound questions… The genome project has paved the way for DNA fingerprinting, cloning, and synthetic biology… With genetic modification, we are reshaping evolution itself… Will genetic testing lead to designer babies or eliminate genetic disorders? As gene therapy advancements push the limits of precision medicine, are we ready for these medical breakthroughs and DNA discoveries?
Sources. Watson, J. D., & Crick, F. H. C. (1953). Nature, 171(4356), 737–738. Collins, F. S., & McKusick, V. A. (2001). Science, 291(5507), 1215–1220. Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). Science, 337(6096), 816–821. Pääbo, S. (2014). Annual Review of Genetics, 38, 645–679. Lander, E. S., Linton, L. M., Birren, B., et al. (2001). Nature, 409(6822), 860–921.