Toggle light / dark theme

New observations from the National Science Foundation National Radio Astronomy Observatory’s (NSF NRAO) Karl G. Jansky Very Large Array (NSF VLA) provide compelling evidence supporting a universal mechanism for the collimation of astrophysical jets, regardless of their origin.

The new study, published in The Astrophysical Journal Letters, reveals the presence of a helical magnetic field within the HH 80–81 protostellar jet, a finding that mirrors similar structures observed in jets emanating from supermassive black holes.

Jets, powerful, highly collimated outflows of matter and energy, are observed across a vast range of scales in the universe. From the supermassive black holes at the centers of galaxies to the young stars in our own Milky Way, these jets play a crucial role in the evolution of their host systems. However, the precise mechanism that guides these jets and prevents them from dispersing into space has remained a long-standing puzzle.

Could tiny grains from asteroid Bennu unlock the secrets of life in our solar system?


Does life exist beyond Earth and have the building blocks of life existed in our solar system for billions of years? This is what a recent study published in Nature Astronomy hopes to address as a team of international researchers analyzed dust samples obtained from the asteroid Bennu, which is hypothesized to have broken off from a larger parent body, to ascertain if it contains the building blocks of life as we know it. This study has the potential to help scientists better understand the early conditions of the solar system, along with the formation and evolution of the planets and moons that comprise it, as well.

For the study, the researchers used a transmission electron microscope at Goethe University to analyze grains that were part of the 122 grams (0.27 pounds) of dust samples returned to Earth by NASA’s OSIRIS-REx mission in September 2024. The goal of the study was to ascertain what components comprise Bennu, which existed since the early days of the solar system more than 4 billion years ago.

In the end, the researchers identified greater amounts of nitrogen, carbon, and ammonia than were obtained from asteroid Ryugu by Japan’s Hayabusa2 spacecraft in 2020. Additionally, this study identified 14 of the 20 amino acids that comprise Earth-based biology, along with all five nucelobases that comprise DNA and RNA. These findings indicate that the building blocks of life potentially existed in the solar system billions of years ago and could comprise some of the planetary bodies of astrobiological interest today, including Saturn’s moon Enceladus and dwarf planet Ceres.

MIT physicists, in collaboration with colleagues, have measured the geometry—or shape—of electrons in solids at the quantum level for the first time. GOOD. Ask the MIT physicists: 1. What is the physical reality of quantum physics? 2. How is your quantum level defined? 3. What is the spacetime background of your quantum level?

What one researcher see or touch about an elephant will be different, and what different researchers see or touch will be even more different. It is a scientific phenomenon, not the essence of nature. Scientific research guided by correct theories can enable researchers to think more.

According to the Topological Vortex Theory (TVT), spins create everything, spins shape the world. There are substantial distinctions between Topological Vortex Theory (TVT) and traditional physical theories. Grounded in the inviscid and absolutely incompressible spaces, TVT introduces the concept of topological phase transitions and employs topological principles to elucidate the formation and evolution of matter in the universe, as well as the impact of interactions between topological vortices and anti-vortices on spacetime dynamics and thermodynamics.

Using the Hubble Space Telescope (HST), astronomers from the University of California Santa Cruz (UCSC) and elsewhere have observed an ultra-diffuse galaxy known as FCC 224. Results of the observational campaign, published Jan. 18 on the arXiv pre-print server, provide important insights into the properties of this galaxy and its globular cluster system.

Globular clusters (GCs) are collections of tightly bound stars orbiting galaxies. Astronomers perceive them as natural laboratories enabling studies on the evolution of stars and galaxies. In particular, GCs could help researchers to better understand the formation history and evolution of early-type , as the origin of GCs seems to be closely linked to periods of intense star formation.

Located some 65 million light years away in the Fornax galaxy cluster, FCC 224 is a quiescent about 10 billion years old. It has a major axis effective radius of approximately 6,160 light years and its mass is estimated to be at a level of 200 million solar masses.

An international research team led by the University of Göttingen has investigated the influence of the forces exerted by the Zagros Mountains in the Kurdistan region of Iraq on how much the surface of the Earth has bent over the last 20 million years. Their research has revealed that in the present day, deep below the Earth’s surface, the Neotethys oceanic plate—the ocean floor that used to be between the Arabian and Eurasian continents—is breaking off horizontally, with a tear progressively lengthening from southeast Turkey to northwest Iran.

Their findings show how the evolution of the Earth’s surface is controlled by processes deep within the planet’s interior. The research is published in the journal Solid Earth.

When two continents converge over millions of years, the oceanic floor between them slides to great depths beneath the continents. Eventually, the continents collide, and masses of rock from their edges are lifted up into towering mountain ranges. Over millions of years, the immense weight of these mountains causes the Earth’s surface around them to bend downward. Over time, sediments eroded from the mountains accumulate in this , forming plains such as Mesopotamia in the Middle East.

(Q&A — 46:21) Madeline Lancaster, PhD presents her paper as published in the July 10, 2020 issue of Science. [Show ID: 36720]

Please Note: Knowledge about health and medicine is constantly evolving. This information may become out of date.

More from: Breaking News in Stem Cells: Southern California Stem Cell Seminar Series.
(https://www.uctv.tv/stem-cell/stem-cell-seminar/)

More from: Stem Cell Channel.

For example, to compute the magnetic susceptibility, we simply select the operator \(A=\beta {({S}^{z})}^{2}\), where β = 1/T is the inverse temperature. Interestingly, this method of estimating thermal expectation values is insensitive to uniform spectral broadening of each peak, due to a cancellation between the numerator and denominator (see discussion resulting in equation (S69) in Supplementary Information). However, it is highly sensitive to noise at low ω, which is exponentially amplified by eβω. To address this, we estimate the SNR for each DA(ω) independently and zero-out all points with SNR below three times the average SNR. This potentially introduces some bias by eliminating peaks with low signal but ensures that the effects of shot noise are well controlled.

To quantify the effect of noise on the engineered time dynamics, we simulate a microscopic error model by applying a local depolarizing channel with an error probability p at each gate. This results in a decay of the obtained signals for the correlator \({D}_{R}^{A}(t)\). The rate of the exponential decay grows roughly linearly with the weight of the measured operators (Extended Data Fig. 2). This scaling with operator weight can be captured by instead applying a single depolarizing channel at the end of the time evolution, with a per-site error probability of γt with an effective noise rate γ. This effective γ also scales roughly linear as a function of the single-qubit error rate per gate p (Extended Data Fig. 2).

Quantum simulations are constrained by the required number of samples and the simulation time needed to reach a certain target accuracy. These factors are crucial for determining the size of Hamiltonians that can be accessed for particular quantum hardware.

Link :


Through his research, the physician believes there are clues hinting at our reality being a simulation, an has even suggested that mutations are not random — which would debunk the theory of evolution.

The abstract of Vopson’s study read: The simulation hypothesis is a philosophical theory, in which the entire universe and our objective reality are just simulated constructs.

Despite the lack of evidence, this idea is gaining traction in scientific circles as well as in the entertainment industry.

Southwest Research Institute partnered with the Carnegie Institution for Science to perform laboratory experiments to better understand how Saturn’s moon Titan can maintain its unique nitrogen-rich atmosphere. Titan is the second largest moon in our solar system and the only one that has a significant atmosphere.

“While just 40% the diameter of the Earth, Titan has an atmosphere 1.5 times as dense as the Earth’s, even with a lower gravity,” said SwRI’s Dr. Kelly Miller, lead author of a paper about these findings published in the journal Geochimica et Cosmochimica Acta. “Walking on the surface of Titan would feel a bit like scuba diving.”

The origin, age, and evolution of this atmosphere, which is roughly 95% nitrogen and 5% methane, has puzzled scientists since it was discovered in 1944.