Toggle light / dark theme

A deadly fungal epidemic in Brazil is evolving fast: pollution, cats, and genetics may be fueling its unstoppable spread.

Brazil is facing the world’s largest and most persistent sporotrichosis epidemic, a fungal infection spread primarily through cats. A new study reveals an alarming genetic diversity in the fungus, suggesting that urban pollutants may be accelerating its evolution. Researchers identified molecular markers that could enhance diagnostics and treatments, while also highlighting the rapid adaptation and virulence of Sporothrix brasiliensis.

Unraveling the Largest Sporotrichosis Epidemic.

Consciousness is one of the most fundamental aspects of our existence, but it remains barely understood, even defined. Across the world scholars of many disciplines — philosophy, science, social science, theology — are joined on a quest to understand this phenomenon.

Tune into one of the more original and controversial thinkers at the forefront of consciousness research, Stuart Hameroff, as he presents his ideas. Hameroff is an anaesthesiologist who, alongside Roger Penrose, proposes that the source of consciousness is structural, produced from a certain shape in our brain. He expands on this, and much more (such as evolution), in this talk. Have a listen!

To witness such topics discussed live buy tickets for our upcoming festival: https://howthelightgetsin.org/festivals/

In the 1930s, researchers first noticed oddities in how galaxies moved, suggesting something invisible exerted gravitational pull. Decades later, studies of the cosmic microwave background —the lingering radiation from the universe’s birth—confirmed dark matter’s importance in shaping cosmic evolution.

A pivotal study by the Planck Collaboration in 2018 revealed that dark matter makes up roughly 27% of the universe’s total energy. By comparison, ordinary matter—the stuff of planets, stars, and us—accounts for only 5%.

Scientists have spent decades trying to understand what dark matter might be. Supersymmetry, a popular theory in particle physics, proposes a “partner” particle for every known particle, potentially offering clues about dark matter’s identity.

Researchers discovered uniquely human neuroanatomical features in a study comparing human brains to macaque and chimpanzee brains.

A groundbreaking study reveals that what makes humans unique isn’t just intelligence but also emotional and social cognition. Comparing brain scans of humans, chimpanzees, and macaques, researchers found that key brain connections related to emotions and social interactions are distinctly human, highlighting the deep-rooted role of relationships in human evolution.

What makes the human brain unique?

A terrifying glimpse at one potential fate of our Milky Way galaxy has come to light thanks to the discovery of a cosmic anomaly that challenges our understanding of the universe.

An international team of astronomers led by CHRIST University, Bangalore, found that a massive spiral galaxy almost 1 billion light-years away from Earth harbors a supermassive black hole billions of times the sun’s mass which is powering colossal radio jets stretching 6 million light-years across.

That is one of the largest known for any spiral galaxy and upends conventional wisdom of galaxy evolution, because such powerful jets are almost exclusively found in , not spirals.

The Dark Energy Spectroscopic Instrument (DESI) is mapping millions of celestial objects to better understand dark energy—the mysterious driver of our universe’s accelerating expansion. Today, the DESI collaboration released a new collection of data for anyone in the world to investigate.

The dataset is the largest of its kind, with information on 18.7 million objects: roughly 4 million stars, 13.1 million galaxies, and 1.6 million quasars (extremely bright but distant objects powered by supermassive black holes at their cores).

While the experiment’s main mission is illuminating , DESI’s Data Release 1 (DR1) could yield discoveries in other areas of astrophysics, such as the evolution of galaxies and black holes, the nature of dark matter, and the structure of the Milky Way.

The heliosphere, a cosmic bubble formed by the Sun, protects our solar system from interstellar threats and influences life’s evolution. Despite its vital role, its true shape remains a puzzle, with data from Voyager missions hinting at its complexities. Upcoming interstellar probes aim to uncover more about this mysterious region.

The Sun does more than just warm the Earth, making it habitable for people and animals. It also shapes a vast region of space. This region, known as the heliosphere, extends more than a hundred times the distance between the Sun and Earth, influencing everything within it.

As a star, the Sun constantly emits a flow of charged particles called the solar wind, a stream of energized plasma.

“Our hope with this kind of research is to understand our own solar system, life, and ourselves in comparison to other exoplanetary systems, so we can contextualize our existence,” said William Balmer.


What can carbon dioxide in an exoplanet’s atmosphere teach us about its formation and evolution? This is what a recent study published in The Astrophysical Journal hopes to address as an international team of researchers made the first direct images of carbon dioxide in the atmospheres of two exoplanetary systems. This study has the potential to help researchers better understand the formation and evolution of exoplanet atmospheres and how this could lead to finding life as we know it, or even as we don’t know it.

For the study, the researchers used NASA’s James Webb Space Telescope (JWST) to analyze the atmospheres of exoplanets residing in the systems HR 8799 and 51 Eridani (51 Eri) with the direct imaging method. The HR 8,799 system is located approximately 135 light-years from Earth and hosts four known exoplanets whose masses range from five to nine times of Jupiter, and the 51 Eridani system is located approximately 97 light-years from Earth and hosts one known exoplanet whose mass is approximately four times of Jupiter. Both systems are very young compared to our solar system at approximately 4.6 billion years old, with HR 8,799 and 51 Eridani being approximately 30 million and 23 million years old, respectively.