Toggle light / dark theme

JWST Detects Carbon-Rich Disk Around Young Exoplanet

“We want to learn more about how our solar system formed moons. This means that we need to look at other systems that are still under construction. We’re trying to understand how it all works,” said Dr. Gabriela Cugno.


How do moons form around gas giant planets? This is what a recent study published in The Astrophysical Journal Letters hopes to address as a team of scientists investigated how circumplanetary disks (CPDs) comprised of the gas and dust leftover from planetary formation evolve into moons. This study has the potential to help scientists better understand the conditions for exomoon formation and evolution and where scientists could potentially search for life beyond Earth.

For the study, the researchers used NASA’s James Webb Space Telescope to observe the CPD orbiting CT Cha b, which is located approximately 620 light-years from Earth and is approximately 17 times as massive as Jupiter. The goal of the study was to ascertain the composition of the CPD and compare it to CT Cha b and the surrounding disk of the host star, CT Cha A.

In the end, the researchers found that the CPD around CT Cha b was composed of carbon-rich chemistry that contrasted compositions of gas giant exoplanet atmospheres. Additionally, the researchers found the CPD’s carbon-rich chemistry composition also contrasted with the disk surrounding CT Cha A. The team concluded that this is the first evidence of moon formation around a gas giant exoplanet and compared this to the potential formation mechanism for Jupiter’s Galilean moons.

Astronomers Create First 3D Map of an Exoplanet’s Atmosphere

“Eclipse mapping allows us to image exoplanets that we can’t see directly, because their host stars are too bright,” said Dr. Ryan Challener.


What can a 3D map of an exoplanet’s atmosphere teach astronomers about the planet’s formation, evolution, and composition? This is what a recent study published in Nature Astronomy hopes to address as a team of scientists presented a first-time 3D map of an exoplanet’s atmosphere based on temperature. This study has the potential to help scientists better understand the formation and evolution of exoplanet atmospheres while opening the doors for developing better methods of studying them.

For the study, the researchers used data obtained from NASA’s James Webb Space Telescope to develop a new method called 3D eclipse mapping on WASP-18b, which is located just over 400 light-years from Earth and whose radius is slightly more than Jupiter’s while have ten times its mass. WASP-18b is known as an “ultra-hot” Jupiter, as it orbits extremely close to its star at 0.02024 astronomical units (AU) while completing one orbit in only 0.9 days. For context, the planet Mercury orbits our Sun at 0.387 AU and completes one orbit in 88 days. WASP-18b is also tidally locked to its star like our Moon is tidally locked to Earth.

In the end, the researchers found that WASP-18b’s “dayside” features variations in temperature and chemical composition while also exhibiting a circular “hotspot” where the largest amount of starlight hits the atmosphere. Additionally, the team found this hotspot is surrounded by a colder “ring” closer to the limbs of the planet, or the outer edges where the shape of the planet is visible.

White Dwarf Consumes Remnants of Its Long-Dead Planetary System

“This discovery challenges our understanding of planetary system evolution,” said Érika Le Bourdais. “Ongoing accretion at this stage suggests white dwarfs may also retain planetary remnants still undergoing dynamical changes.”


What can white dwarf stars eating their own planets teach astronomers about planetary and solar system formation and evolution? This is what a recent study published in The Astrophysical Journal hopes to address as a team of scientists investigated an old planetary system whose planets are still actively being consumed by their white dwarf star. This study has the potential to help scientists better understand the formation and evolution of planetary systems and what our solar system could look like billions of years from now.

For the study, the researchers observed and analyzed the white dwarf star, LSPM J0207+3331, which is located approximately 145 light-years from Earth and hosts one of the oldest known planetary systems to date. Additionally, this system contains the most extensive metal-rich debris disk orbiting a hydrogen-rich white dwarf star ever discovered, which could challenge longstanding notions regarding the fate of solar systems after Sun-like stars expire and become white dwarfs.

The hydrogen-rich aspect of the white dwarf is intriguing since these types of stars typically hide successful observations of certain elements within the dust and gas of the aged solar system. Potentially the most intriguing finding from this study is the researchers discovered the remnants of a planetary body that was originally about 120 miles (200 kilometers) in diameter that got shredded by its host white dwarf star.

Scientists Discover Ocean Bacteria That Feast on Plastic

A newly discovered enzyme motif reveals how ocean microbes are evolving to digest plastic, potentially aiding future cleanup efforts. Hidden in the depths of the ocean, scientists have discovered marine bacteria equipped with enzymes that can consume plastic, their evolution shaped by humanity’s

A new, expansive view of the Milky Way reveals our galaxy in unprecedented radio color

Astronomers from the International Centre of Radio Astronomy Research (ICRAR) have created the largest low-frequency radio color image of the Milky Way ever assembled. This spectacular new image captures the Southern Hemisphere view of our Milky Way galaxy, revealing it across a wide range of radio wavelengths, the colors of radio light.

A paper describing this work appears in Publications of the Astronomical Society of Australia.

It provides astronomers with new ways to explore the birth, evolution, and death of stars in our galaxy.

Leaf arrangement steers vascular pattern evolution in ferns, research finds

Research by Assistant Professor Jacob S. Suissa at the University of Tennessee, Knoxville, is revealing complexity in how ferns have evolved. Instead of the vascular structure inside fern stems changing as a direct adaptation to the environment, he discovered that shifts in vascular bundle arrangement in the stem are developmentally covaried with leaf placement on the stem.

“As leaf number increases, we see a direct 1:1 increase in vascular bundle number, and as the placement of leaves along the stem changes, we also see a shift in the of vascular bundles in the stem,” said Suissa, a member of UT’s Department of Ecology and Evolutionary Biology.

For 150 years, researchers have focused on how vascular bundles adapt to the environment. Suissa’s new research, published in Current Biology, suggests leaves are steering the evolution of vascular patterns inside the stem.

An old fish fossil tells a new story about lamniform shark evolution

An international, multi-university research team, including scientists from Columbus State University, has unearthed a crucial new piece of the puzzle in the evolution of sharks.

A recent study published in Communications Biology, “Early gigantic lamniform marks the onset of mega-body size in modern shark evolution,” has identified a new, extinct lamniform shark—a group that includes modern-day great white and mako sharks. It marks the earliest known example of a gigantic shark, suggesting that the trend of mega-body size in modern shark evolution began much earlier than previously thought.

The team, led by Dr. Mohamad Bazzi of Stanford University, included Dr. Mike Newbrey of Columbus State’s Department of Biology and 2020 alumna Tatianna Blake. They derived their conclusions after studying specimens from the Darwin Formation that outcrops at Darwin, Australia. These specimens, collected by other researchers in the 1980s, had been stored in a museum collection and remained unstudied until recently, when the team examined them in detail.

How social norms evolved over time and differ across countries

When humans interact with each other and engage in everyday activities, they typically follow various undefined rules, also known as social norms. These rules include things like greeting acquaintances in specific ways upon meeting them, not interrupting others when they speak, waiting in line for one’s turn at the post office, and countless other behaviors.

Social norms can differ significantly across and geographical regions. In addition, these unspoken rules are known to have changed considerably across history, as societies evolved and the values guiding people’s behavior changed.

Researchers at the Institute for Future Studies in Stockholm and other institutes in Sweden recently carried out a large-scale study investigating the evolution of social norms across time, while also exploring the similarities and differences between the norms in 90 societies worldwide. Their paper, published in Communications Psychology, identifies a common trend in the recent evolution of norms in most societies, while also uncovering characteristic patterns in different types of societies.

Simple DNA switch helps tropical butterflies change wing patterns with the seasons

Scientists from the National University of Singapore (NUS) have discovered a simple DNA “switch” that helps tropical butterflies adjust the size of their wing eyespots in response to seasonal temperatures, shedding light on the evolution of environmental sensitivity. The findings could inform future efforts to understand and potentially bolster adaptation in a changing climate.

Insects often adapt in surprising ways to their surroundings. Some even change their colors with the seasons. This seasonal flexibility, called plasticity, helps them survive but its evolutionary origins have remained a mystery.

A team led by Professor Antónia Monteiro from the NUS Department of Biological Sciences, identified a stretch of DNA that helps certain butterflies switch their wing patterns between wet and dry seasons.

/* */