Toggle light / dark theme

New technique prints metal oxide thin film circuits at room temperature

Researchers have demonstrated a technique for printing thin metal oxide films at room temperature, and have used the technique to create transparent, flexible circuits that are both robust and able to function at high temperatures.

The paper, “Ambient Printing of Native Oxides for Ultrathin Transparent Flexible Circuit Boards,” was published August 15 in the journal Science.

“Creating metal oxides that are useful for electronics has traditionally required making use of specialized equipment that is slow, expensive, and operates at high temperatures,” says Michael Dickey, co-corresponding author of a paper on the work and the Camille and Henry Dreyfus Professor of Chemical and Biomolecular Engineering at North Carolina State University.

Huge Lake on Mars // Fate of Milkdromeda // Hope for VIPER Rover

Vast amounts of water found on Mars, but there’s a catch, Milky Way and Andromeda might not merge after all, a planet found before it gets destroyed, and an easier way to terraform Mars.

👉 Submit Your Questions for Patreon Q\&A:
/ 110229335

🦄 Support us on Patreon:
/ universetoday.

📚 Suggest books in the book club:
/ universe-today-book-club.

00:00 Intro.
00:16 Water found on Mars.
02:55 Huge lake on Mars.
04:20 Terraforming Mars.
08:05 VIPER might be saved.
09:38 Milkdromeda might not be happening.
10:53 Vote results.
11:28 Planet on the verge of destruction.
13:09 New way of detecting supermassive black holes.
14:21 Vera Rubin’s secondary mirror.
15:40 More space news.
16:11 Livestreams and Q\&A

Host: Fraser Cain.

Researchers Develop Innovative Battery Recycling Method

A research team at Rice University led by James Tour, the T.T. and W.F. Chao Professor of Chemistry and professor of materials science and nanoengineering, is tackling the environmental issue of efficiently recycling lithium ion batteries amid their increasing use.

The team has pioneered a new method to extract purified active materials from battery waste as detailed in the journal Nature Communications on July 24. Their findings have the potential to facilitate the effective separation and recycling of valuable battery materials at a minimal fee, contributing to a greener production of electric vehicles (EVs).

“With the surge in battery use, particularly in EVs, the need for developing sustainable recycling methods is pressing,” Tour said.

Engineering Toxoplasma gondii secretion systems for intracellular delivery of multiple large therapeutic proteins to neurons

Bracha et al.


Toxoplasma gondii culture and maintenance.

Type I RH and type II Pru and ME49 strain T. gondii were grown in HFF in high-glucose Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 4 mM l-glutamine, 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin or 20 μg ml−1 gentamicin antibiotics (‘complete DMEM’) at 37 °C with 5% CO2. Cultures were monitored daily and T. gondii were passaged by transferring 1–3 drops (20–100 μl) of the supernatant of a lysed dish (containing extracellular parasites) into a fresh dish with confluent HFF cells. Type I RH and type II Pru strains were validated by PCR–restriction-fragment length polymorphism (primers described in Supplementary Table 1)81 or by passage into Cre Reporter cell lines to confirm Cre recombination as previously described16.

Intuitive Machines seeks to take over NASA’s VIPER lunar rover

Intuitive Machines reported revenue of $41.4 million in the second quarter, more than double the $18 million the company reported in the same quarter of 2023. It had an operating loss of $28.2 million in the quarter, also more than double the $13.2 million operating loss it reported in the same quarter a year ago.

The company attributed the increase in revenue to new work, such as a NASA engineering services contract that started late last year as well as initial work on a Lunar Terrain Vehicle Services contract the company received in April.

The increased losses came from what Steve Vontur, chief financial officer, described as “non-cash impacts” to modifications to its next two lunar lander missions, IM-2 and IM-3, both flying payloads for NASA’s Commercial Lunar Payload Services (CLPS) program.

New genetically engineered wood can store carbon and reduce emissions

Researchers at the University of Maryland genetically modified poplar trees to produce high-performance, structural wood without the use of chemicals or energy-intensive processing. Made from traditional wood, engineered wood is often seen as a renewable replacement for traditional building materials like steel, cement, glass and plastic. It also has the potential to store carbon for a longer time than traditional wood because it can resist deterioration, making it useful in efforts to reduce carbon emissions.

But the hurdle to true sustainability in engineered wood is that it requires processing with volatile chemicals and a significant amount of energy, and produces considerable waste. The researchers edited one gene in live poplar trees, which then grew wood ready for engineering without processing.

The research was published online on August 12, 2024, in the Journal Matter.

Researchers discover new material for optically-controlled magnetic memory

Researchers at the University of Chicago Pritzker School of Molecular Engineering (PME) have made unexpected progress toward developing a new optical memory that can quickly and energy-efficiently store and access computational data. While studying a complex material composed of manganese, bismuth and tellurium (MnBi2Te4), the researchers realized that the material’s magnetic properties changed quickly and easily in response to light. This means that a laser could be used to encode information within the magnetic states of MnBi2Te4.

3D laser printing with bioinks from microalgae

Microalgae such as the diatom Odontella aurita and the green alga Tetraselmis striata are especially suitable as “biofactories” for the production of sustainable materials for 3D laser printing due to their high content in lipids and photoactive pigments. An international research team led by Prof. Dr Eva Blasco, a scientist at the Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM) of Heidelberg University, has succeeded for the first time in manufacturing inks for printing complex biocompatible 3D microstructures from the raw materials extracted from the microalgae. The microalgae-based materials could be used in future as the basis for implants or scaffolds for 3D cell cultures.

The research has been published in Advanced Materials (“Printing Green: Microalgae-Based Materials for 3D Printing with Light”).

A new ink system, based on the microalgae Odontella aurita and Tetraselmis striata, enables the manufacturing of complex 3D microstructures with high quality and precision. (Image: Clara Vazquez-Martel)

Missing Link Discovered: New Research Paves the Way for Charging Phones in Under a Minute

CU Boulder scientists have found how ions move in tiny pores, potentially improving energy storage in devices like supercapacitors. Their research updates Kirchhoff’s law, with significant implications for energy storage in vehicles and power grids.

Imagine if your dead laptop or phone could be charged in a minute, or if an electric car could be fully powered in just 10 minutes. While this isn’t possible yet, new research by a team of scientists at CU Boulder could potentially make these advances a reality.

Published in the Proceedings of the National Academy of Sciences, researchers in Ankur Gupta’s lab discovered how tiny charged particles, called ions, move within a complex network of minuscule pores. The breakthrough could lead to the development of more efficient energy storage devices, such as supercapacitors, said Gupta, an assistant professor of chemical and biological engineering.

/* */