Toggle light / dark theme

Physicists at RIKEN have developed an electronic device that hosts unusual states of matter, which could one day be useful for quantum computation.

When a material exists as an ultrathin layer—a mere one or a few atoms thick—it has totally different properties from thicker samples of the same material. That’s because confining electrons to a 2D plane gives rise to exotic states. Because of their flat dimensions and their broad compatibility with existing semiconductor technologies, such 2D materials are promising for harnessing new phenomenon in .

These states include quantum spin Hall insulators, which conduct electricity along their edges but are electrically insulating in their interiors. Such systems when coupled with superconductivity have been proposed as a route toward engineering topological superconducting states that have potential application in future topological quantum computers.

Are humans disrupting the Earth’s salt cycle through deicing roads and other salt activities? This is what a recent study published in Nature Reviews Earth & Environment hopes to address as a team of researchers led by the University of Maryland examine the environmental impact of salting roads as a safety measure from freezing temperatures, resulting in increased levels of salt throughout the environment, including the air, soil, and water, thus disrupting the Earth’s natural salt cycle. While the Earth’s natural salt cycle is a process that occurs over vast periods of geologic time, human activities are increasing this cycle in alarming ways.

Salts being used as deicing agents are common across the United States during the winter, with more than 44 billion pounds of deicing agent used annually. In fact, between 2013–17, road salts accounted for 44 percent of the salt use in the United States, which accounts for 13.9 percent of total dissolved solids that make their way into streams and waterways across the nation.

“This is a slow-moving train wreck,” said Dr. Megan Rippy, who is an assistant professor in civil and environmental engineering at Virginia Tech and a co-author on the study. “It’s playing out so slowly that it’s easy to overlook that our streams, lakes, and drinking water resources are becoming progressively saltier.”

On the highway of heat transfer, thermal energy is moved by way of quantum particles called phonons. But at the nanoscale of today’s most cutting-edge semiconductors, those phonons don’t remove enough heat. That’s why Purdue University researchers are focused on opening a new nanoscale lane on the heat transfer highway by using hybrid quasiparticles called “polaritons.”

Thomas Beechem loves . He talks about it loud and proud, like a preacher at a big tent revival.

“We have several ways of describing energy,” said Beechem, associate professor of mechanical engineering. “When we talk about light, we describe it in terms of particles called ‘photons.’ Heat also carries energy in predictable ways, and we describe those waves of energy as ‘phonons.’ But sometimes, depending on the material, photons and phonons will come together and make something new called a ‘.’ It carries energy in its own way, distinct from both photons or phonons.”

A team of engineers at Duke University have developed a method to broaden the reach of CRISPR technologies. While the original CRISPR system could only target 12.5% of the human genome, the new method expands access to nearly every gene to potentially target and treat a broader range of diseases through genome engineering.

The research involved collaborators at Harvard University, Massachusetts Institute of Technology, University of Massachusetts Medical School, University of Zurich and McMaster University.

This work was published on October 4 in the journal Nature Communications.

A future quantum network may become less of a stretch thanks to researchers at the University of Chicago, Argonne National Laboratory and Cambridge University.

A team of researchers announced a breakthrough in quantum network engineering. By “stretching” thin films of diamond, they created that can operate with significantly reduced equipment and expense. The change also makes the bits easier to control.

The researchers hope the findings, published Nov. 29 in Physical Review X, can make future quantum networks more feasible.

Engineered immune cells have demonstrated great efficacy in lymphoma but not in solid tumors. On Oct 13th, 2021, two experts described recent advances in the development of CAR therapy for solid tumors.

Tamara Laskowski, PhD, Scientific Project Director of the CAR NK Program, Adoptive Cell Therapy Platform at the MD Anderson Cancer Center discussed “Engineering off-the-shelf CAR immune cells”.

Maik Luu, PhD, Project Principal Investigator at the University Hospital Würzburg, presented her results on “Improving CAR T therapy efficacy with the gut microbiome”.

BPS Bioscience CAR T-Cell Therapy Products: https://bpsbioscience.com/research-areas/car-t.

More about CAR T-Cell Therapy: https://bpsbioscience.com/car-t-cell-therapy-technical-note.

LinkedIn: https://www.linkedin.com/company/bps-bioscience-inc/

Skoltech scientists have found a way to improve the most widely used technology for producing single-walled carbon nanotube films—a promising material for solar cells, LEDs, flexible and transparent electronics, smart textiles, medical imaging, toxic gas detectors, filtration systems, and more. By adding hydrogen gas along with carbon monoxide to the reaction chamber, the team managed to almost triple carbon nanotube yield compared with when other growth promoters are used, without compromising quality.

Until now, low yield has been the bottleneck limiting the potential of that manufacturing technology, otherwise known for high product quality. The study has been published in the Chemical Engineering Journal.

Although that is not how they’re really made, conceptually, nanotubes are a form of carbon where sheets of atoms in a honeycomb arrangement—known as graphene—are seamlessly rolled into hollow cylinders.