Toggle light / dark theme

Reinvent Yourself: The Playboy Interview with Ray Kurzweil

Many think author, inventor and data scientist Ray Kurzweil is a prophet for our digital age. A few say he’s completely nuts. Kurzweil, who heads a team of more than 40 as a director of engineering at Google, believes advances in technology and medicine are pushing us toward what he calls the Singularity, a period of profound cultural and evolutionary change in which computers will outthink the brain and allow people—you, me, the guy with the man-bun ahead of you at Starbucks—to live forever. He dates this development at 2045.

Raymond Kurzweil was born February 12, 1948, and he still carries the plain, nasal inflection of his native Queens, New York. His Jewish parents escaped Hitler’s Austria, but Kurzweil grew up attending a Unitarian church. He worshipped knowledge above all, and computers in particular. His grandmother was one of the first women in Europe to earn a Ph.D. in chemistry. His uncle, who worked at Bell Labs, taught Ray computer science in the 1950s, and by the age of 15, Kurzweil was designing programs to help do homework. Two years later, he wrote code to analyze and create music in the style of various famous composers. The program won him the prestigious Westinghouse Science Talent Search, a prize that got the 17-year-old an invitation to the White House. That year, on the game show I’ve Got a Secret, Kurzweil pressed some buttons on a data processor the size of a small car. It coughed out original sheet music that could have been written by Brahms.

After earning degrees in computer science and creative writing at MIT, he began to sell his inventions, including the first optical character recognition system that could read text in any normal font. Kurzweil knew a “reading machine” could help the blind, but to make it work, he first had to invent a text-to-speech synthesizer, as well as a flatbed scanner; both are still in wide use. In the 1980s Kurzweil created the first electronic music keyboard to replicate the sound of a grand piano and many other instruments. If you’ve ever been to a rock concert, you’ve likely seen the name Kurzweil on the back of a synthesizer.

Cosmic Ray Tech May Unlock Pyramids’ Secrets

A new generation of muon telescopes has been built to detect the presence of secret structures and cavities in Egypt’s pyramids, a team of researchers announced on Friday.

Built by CEA (French Alternative Energies and Atomic Energy Commission) the devices add to an armory of innovative, non-destructive technologies employed to investigate four pyramids which are more than 4,500 years old. They include the Great Pyramid, Khafre or Chephren at Giza, the Bent pyramid and the Red pyramid at Dahshur.

The project, called ScanPyramids, is scheduled to last one year and is being carried out by a team from Cairo University’s Faculty of Engineering and the Paris-based non-profit organization Heritage, Innovation and Preservation (HIP Institute) under the authority of the Egyptian Ministry of Antiquities.

Book: Space Architecture Education for Engineers and Architects: Designing and Planning Beyond Earth

“This book considers two key educational tools for future generations of professionals with a space architecture background in the 21st century: (1) introducing the discipline of space architecture into the space system engineering curricula; and (2) developing space architecture as a distinct, complete training curriculum.”

Read more

Will Quantum Encryption Arrive Before Quantum Computers Break All Our Passwords?

Australia is making great strides in this area as well.


Scientists are racing to deploy foolproof quantum encryption before quantum computers come along that render all our passwords useless.

Passwords work today because the computers we have, while theoretically capable of breaking passwords, would take an impractical amount of time to do so.

“The encryption schemes today are based on factoring and on prime numbers, so if you had a computer that could factor instantly, if it did that today it could break all encryption schemes,” said David Awshalom, an experimental physicist at the University of Chicago’s Institute of Molecular Engineering.

Cyborgs Aren’t Just For Sci-Fi Anymore

Nthing new; nice to see more folks waking up.


We’re moving beyond just prosthetics and wearable tech. Soon, we’ll all by cyborgs in one way or another.

From The Six Million Dollar Man to Inspector Gadget to Robocop, humans with bionic body parts have become commonplace in fiction. In the real world, we use technology to restore functionality to missing or defective body parts; in science fiction, such technology gives characters superhuman abilities. The future of cyborgs may hinge on that distinction.

The Defense Advanced Research Projects Agency (DARPA) plans to develop a brain implant that links human brains to computers. Under the Obama administration’s Brain Initiative, DARPA has developed eight programs designed to enhance human physical and cognitive capabilities. The Neural Engineering System Design program seeks to “bridge the bio-electronic divide” via a small implant that acts as a translator between the brain and the digital world, giving humans improved sight and hearing.

Team uses 3D tissue engineering to revolutionize dental disease

The discomfort and stigma of loose or missing teeth could be a thing of the past as Griffith University researchers pioneer the use of 3D bioprinting to replace missing teeth and bone.

The three-year study, which has been granted a National Health and Medical Research Council Grant of $650,000, is being undertaken by periodontist Professor Saso Ivanovski from Griffith’s Menzies Health Institute Queensland.

As part of an Australian first, Professor Ivanovski and his team are using the latest 3D bioprinting to produce new, totally ‘bespoke,’ tissue engineered and gum that can be implanted into a patient’s jawbone.

DARPA Project to Seek Lightyear-Like Leap in Design, Manufacturing

With 3D printers; many small mom-and-pop manufacturers are easy to set up anywhere. Which brings in some interesting challenges when thinking about regulatory compliance and safety. Imaging a neighbor who was laid off gets a 3D printer and begins building and shipping things from their home. Plus they’re stock piling chemicals and other things in their basement or garage as “bi-products” in the production of the goods that they are building with their $15K 3D printer. Question for many is — how safe is it? how can this be monitored and controlled?


Manufacturers haven’t been able to fully exploit advancements in new materials, because computer-aided design and engineering tools haven’t kept pace, says a program manager for the government agency.

Vandenbrande: Humans have reached limits of their imagination.

ORNL, UT Team Up on Breakthrough That Could Aid Quantum Computing

Another reason for being in east TN this month.


Genevieve Martin/ORNL This rendering illustrates the excitation of a spin liquid on a honeycomb lattice using neutrons. As with many other liquids, it is difficult to see a spin liquid unless it is “splashed,” in this case by neutrons depicted as moving balls. The misaligned and vibrating spin pair in the middle signifies the ephemeral Majorana fermion constantly in motion. The ripples formed when the neutrons hit the spin liquid represent the excitations that are a signature of the Majorana fermions. The atomic structure on the left signifies the honeycomb alpha-ruthenium trichloride, in which each ruthenium atom has a spin and is surrounded by a cage of chlorine atoms.

Researchers from the U.S. Department of Energy’s Oak Ridge National Laboratory and UT’s Department of Materials Science and Engineering and Department of Physics and Astronomy used neutrons to uncover novel behavior in materials that holds promise for quantum computing.

The findings, published in Nature Materials, provide evidence for long-sought phenomena in a two-dimensional magnet.

/* */