Toggle light / dark theme

Quantum future discussed at London’s Royal Society Conference.


By Tushna Commissariat

Not a week goes by here at Physics World that we don’t cover some advance in quantum mechanics – be it another step towards quantum computing or error correction, or a new type of quantum sensor, or another basic principle being verified and tested at new scales. While each advance may not always be a breakthrough, it is fair to say that the field has grown by leaps and bound in the last 20 years or so. Indeed, it has seen at least two “revolutions” since it first began and is now poised on the brink of a third, as scientific groups and companies around the world race to build the first quantum computer.

With this in mind, some of the stalwarts of the field – including Peter Knight, Ian Walmsley, Gerard Milburn, Stephen Till and Jonathan Pritchard – organized a two-day discussion meeting at the Royal Society in London, titled “Quantum technology for the 21st century “, which I decided to attend. The meeting’s main aim was to bring together academic and industry leaders “in quantum physics and engineering to identify the next generation of quantum technologies for translational development”. As Knight said during his opening speech, the time has come to “balance the massive leaps that the science has made with actual practical technology”.

Robotics with grace — hmmm.


A new type of hydrostatic transmission that combines hydraulic and pneumatic lines can safely and precisely drive robot arms, giving them the delicacy necessary to pick up an egg without breaking it.

This transmission has almost no friction or play, offering extreme precision for tasks such as threading a sewing needle.

You are really starting to see the shape of the Singularity, ever more clearly, in the convergence of so many engineering and scientific discoveries, inventions, and philosophical musings.

I can say, without a doubt, that we are all living in truly extraordinary times!


This five-fingered robot hand developed by University of Washington computer science and engineering researchers can learn how to perform dexterous manipulation — like spinning a tube full of coffee beans — on its own, rather than having humans program its actions. (credit: University of Washington)

Breakthrough Starshot aims to demonstrate proof of concept for ultra-fast light-driven nanocrafts, and lay the foundations for a first launch to Alpha Centauri within the next generation. Along the way, the project could generate important supplementary benefits to astronomy, including solar system exploration and detection of Earth-crossing asteroids.

Breakthrough Starshot is a $100 million research and engineering program aiming to demonstrate proof of concept for light-propelled nanocrafts. These could fly at 20 percent of light speed and capture images of possible planets and other scientific data in our nearest star system, Alpha Centauri, just over 20 years after their launch.

Nextbigfuture covered the project last month when it was announced. Here is more information from the Breakthrough Initiative website.

Read more

Creating Q-Dots/ QDs (Acronym seems to depend on which reference book, article that you read) more cheaply and efficiently too.


Quantum dots (QDs) are semiconducting nanocrystals prized for their optical and electronic properties. The brilliant, pure colors produced by QDs when stimulated with ultraviolet light are ideal for use in flat screen displays, medical imaging devices, solar panels and LEDs. One obstacle to mass production and widespread use of these wonder particles is the difficulty and expense associated with current chemical manufacturing methods that often requiring heat, high pressure and toxic solvents.

But now three Lehigh University engineers have successfully demonstrated the first precisely controlled, biological way to manufacture quantum dots using a single-enzyme, paving the way for a significantly quicker, cheaper and greener production method. Their work was recently featured in an article in The New York Times called “A curious tale of quantum dots.”

The Lehigh team— Bryan Berger, Class of 1961 Associate Professor, Chemical and Biomolecular Engineering; Chris Kiely, Harold B. Chambers Senior Professor, Materials Science and Engineering and Steven McIntosh, Class of 1961 Associate Professor, Chemical and Biomolecular Engineering, along with Ph.D. candidate Li Lu and undergraduate Robert Dunleavy—have detailed their findings in an article called “Single Enzyme Biomineralization of Cadmium Sulfide Nanocrystals with Controlled Optical Properties” published in the Proceedings of the National Academy of Sciences (PNAS).

Hmmm; I see a bright future for this. No more surgeries by plastic surgeons? possibly?


Scientists at MIT, Massachusetts General Hospital, Living Proof, and Olivo Labs have developed a new material that can temporarily protect and tighten skin, and smooth wrinkles. With further development, it could also be used to deliver drugs to help treat skin conditions such as eczema and other types of dermatitis.

The material, a silicone-based polymer that could be applied on the as a thin, imperceptible coating, mimics the mechanical and elastic properties of healthy, youthful skin. In tests with human subjects, the researchers found that the material was able to reshape “eye bags” under the lower eyelids and also enhance skin hydration. This type of “second skin” could also be adapted to provide long-lasting ultraviolet protection, the researchers say.

“It’s an invisible layer that can provide a barrier, provide cosmetic improvement, and potentially deliver a drug locally to the area that’s being treated. Those three things together could really make it ideal for use in humans,” says Daniel Anderson, an associate professor in MIT’s Department of Chemical Engineering and a member of MIT’s Koch Institute for Integrative Cancer Research and Institute for Medical Engineering and Science (IMES).

Using bacteria to aid in the design of superior biomedical implants capable of resisting colonization by infectious bugs.


Dr. Pushkar Lele, assistant professor in the Artie McFerrin Department of Chemical Engineering at Texas A&M University, is developing novel insights in cellular mechanics with bacteria to aid in the design of superior biomedical implants capable of resisting colonization by infectious bugs. Lele’s group also focuses on unraveling the fundamental principles underlying interactions in biological soft-matter to build bio-nanotechnology-based molecular machines. Lele’s lab currently focuses on a unique electric rotary device found in bacteria — the flagellar motor.

According to Lele, it is well established how motile bacteria employ flagellar motors to swim and respond to chemical stimulation. This allows bacteria to search for nutrients and evade harmful chemicals. However, in his recent work, Lele has now demonstrated that the motor is also sensitive to mechanical stimulation and identified the protein components responsible for the response. Sensing initiates a sensitive control of the assemblies of numerous proteins that combine to form the motor. Control over motor assemblies facilitates fine-tuning of cellular behavior and promotes chances of survival in a variety of environments.

“What is the sense of touch in a bacterium? It is likely that they employ appendages such as the flagella to detect solid substrates, analogous to our use of fingers,” Lele said. “How they recognize the substrate using the flagellum has been a long-standing question in biology with tremendous biomedical significance. Our findings have provided a handle on this important problem. We now know [how] the motor-components [are] involved in sensing the substrate [and] would like to know how these sensors trigger signaling networks that ultimately cause infections. “.

Making software immortal; Raytheon is trying to make it a reality.


CAMBRIDGE, Mass., May 2, 2016 /PRNewswire/ — A team led by Raytheon BBN Technologies is developing methods to make mobile applications viable for up to 100 years, despite changes in hardware, operating system upgrades and supporting services. The U.S. Air Force is sponsoring the four-year, $7.8 million contract under the Defense Advanced Research Projects Agency’s Building Resource Adaptive Software Systems program.

“Mobile apps are pervasive in the military, but frequent operating system upgrades, new devices and changing missions and environments require manual software engineering that is expensive and causes unacceptable delays,” said Partha Pal, principal scientist at Raytheon BBN. “We are developing techniques to eliminate these interruptions by identifying the way these changes affect application functionality and modifying the software.”

Read more

Ask an Information Architect, CDO, Data Architect (Enterprise and non-Enterprise) they will tell you they have always known that information/ data is a basic staple like Electricity all along; and glad that folks are finally realizing it. So, the same view that we apply to utilities as core to our infrastructure & survival; we should also apply the same value and view about information. And, in fact, information in some areas can be even more important than electricity when you consider information can launch missals, cure diseases, make you poor or wealthy, take down a government or even a country.


What is information? Is it energy, matter, or something completely different? Although we take this word for granted and without much thought in today’s world of fast Internet and digital media, this was not the case in 1948 when Claude Shannon laid the foundations of information theory. His landmark paper interpreted information in purely mathematical terms, a decision that dematerialized information forever more. Not surprisingly, there are many nowadays that claim — rather unthinkingly — that human consciousness can be expressed as “pure information”, i.e. as something immaterial graced with digital immortality. And yet there is something fundamentally materialistic about information that we often ignore, although it stares us — literally — in the eye: the hardware that makes information happen.

As users we constantly interact with information via a machine of some kind, such as our laptop, smartphone or wearable. As developers or programmers we code via a computer terminal. As computer or network engineers we often have to wade through the sheltering heat of a server farm, or deal with the material properties of optical fibre or copper in our designs. Hardware and software are the fundamental ingredients of our digital world, both necessary not only in engineering information systems but in interacting with them as well. But this status quo is about to be massively disrupted by Artificial Intelligence.

A decade from now the postmillennial youngsters of the late 2020s will find it hard to believe that once upon a time the world was full of computers, smartphones and tablets. And that people had to interact with these machines in order to access information, or build information systems. For them information would be more like electricity: it will always be there, and always available to power whatever you want to do. And this will be possible because artificial intelligence systems will be able to manage information complexity so effectively that it will be possible to deliver the right information at the right person at the right time, almost at an instant. So let’s see what that would mean, and how different it would be from what we have today.

Cambridge University spin-out Optalysys has been awarded a $350k grant for a 13-month project from the US Defense Advanced Research Projects Agency (DARPA). The project will see the company advance their research in developing and applying their optical co-processing technology to solving complex mathematical equations. These equations are relevant to large-scale scientific and engineering simulations such as weather prediction and aerodynamics.

The Optalysys technology is extremely energy efficient, using light rather than electricity to perform intensive mathematical calculations. The company aims to provide existing computer systems with massively boosted processing capabilities, with the aim to eventually reach exaFLOP rates (a billion billion calculations per second). The technology operates at a fraction of the energy cost of conventional high-performance computers (HPCs) and has the potential to operate at orders of magnitude faster.

In April 2015 Optalysys announced that they had successfully built a scaleable, lens-less optical processing prototype that can perform mathematical functions. Codenamed Project GALELEO, the device demonstrates that second order derivatives and correlation pattern matching can be performed optically in a scaleable design.

Read more