Toggle light / dark theme

I never get tired of talking about the many uses for Q-dot technology. One area that has me even more intrigued is how it is used in crystallized formations. I expect to see more and more experimenting on crystalized formations on many fronts including complex circuitry for performance and storage.

And, with synthetic technology today plus 3D printing along with Q-dots we could (as I have eluded to many times over several months) truly begin to see some amazing technology be developed on the wearable tech front.

Wearables could include synthetic circuitry stones in various accessories to not only store information, but also serve as another form of unique id because in synthetic stones we have been able (like in nature) create complex crystalized formations that are each unique/ 1 of a kind like a unique finger print, or iris of an eye. I expect to see some very interesting things coming in this space.


Unique optical features of quantum dots make them an attractive tool for many applications, from cutting-edge displays to medical imaging. Physical, chemical or biological properties of quantum dots must, however, be adapted to the desired needs.

Unfortunately, up to now quantum dots prepared by chemical methods could only be functionalized using copper-based click reactions with retention of their luminescence. This obstacle can be ascribed to the fact that copper ions destroy the ability of quantum dots to emit light. Scientists from the Institute of Physical Chemistry of the Polish Academy of Sciences (IPC PAS) in Warsaw and the Faculty of Chemistry of the Warsaw University of Technology (FC WUT) have shown, however, that zinc oxide (ZnO) quantum dots prepared by an original method developed by them, after modification by the click reaction with the participation of copper ions, fully retain their ability to emit light.

“Click reactions catalyzed by copper cations have long attracted the attention of chemists dealing with quantum dots. The experimental results, however, were disappointing: after modification, the luminescence was so poor that they were just not fit for use. We were the first to demonstrate that it is possible to produce quantum dots from organometallic precursors in a way they do not lose their valuable optical properties after being subjected to copper-catalysed click reactions,” says Prof. Janusz Lewinski (IPC PAS, FC WUT).

In a set of studies in mice bearing human tumors, nanoparticles designed to bind to a protein called P-selectin successfully delivered both chemotherapy drugs and targeted therapies to tumor blood vessels. Targeting the blood vessels improved the delivery of drugs to tumor tissue, causing the tumors to shrink and improving how long the mice lived.

A tumor’s blood vessels can serve as a barrier to engineered drug-delivery systems like nanoparticles, which may not be able to cross the blood vessel wall. However, the same blood vessels may express proteins—such as P-selectin—that researchers can potentially exploit, by engineering their nanoparticles to recognize and latch onto those proteins, which enables them to reach the tumor.

Fluorescence microscopy image showing P-selectin–targeting nanoparticles penetrating lab-grown tumor tissue

Read more

This is a comprehensive and critical write-up on some of my policies by some leading researchers and thinkers. It’s from the magazine website of the IEEE, the world’s largest professional organization devoted to engineering and the applied sciences. Naturally, people in the field of science and engineering are some of the most difficult to please, since they are such critical thinkers (which is precisely why I like them so much):


When a transhumanist runs for president, what does that mean for society?

Read more

Half quad-copter and 1/2 missile.


The design of small UAVs usually falls into one of two categories: the cruciform quadcopter (with extra arms added as necessary) and the fixed-wing glider (such as early iterations of Google’s delivery drones). However, there’s still room for innovation in this market, as demonstrated by the QuadRKT: a quadcopter drone with a rocket-shaped fuselage that can hovers vertically, but also switch to a horizontal orientation when it needs to go really fast.

The QuadRKT’s basic design has been around for a few years, but its creators are now looking to raise funds on Kickstarter for further development. The team originally developed prototypes of the design (then known as the XQ-139 family of aircraft) for DARPA’s Experimental Vertical Takeoff and Landing program. The US agency reportedly declared the QuadRKT “too risky” to build, and the drone’s creators — a team of engineering and aerospace experts — are now trying to make their design a commercial reality by themselves.

There are a lot of big claims being made by QuadRKT, particularly that the design has the “lowest drag coefficient of any quadcopter out there” and that the smallest model has set unofficial speed records of 133 miles per hour. That’s certainly faster than some of the speediest custom-built quadcopters we’ve seen (these can reportedly reach speeds of around 86 mph), but it’s worth remembering that these claims are unverified. It’s also disappointing that QuadRKT’s videos never seem to show the craft in sustained horizontal flight, or its maneuverability — how it handles turns, loops, at high speed.

Read more

WOW — now that’s an engineering feat.


While Dubai is keen to become a 3D printing world leader with their Dubai 3D Printing Strategy, they are by no means the only Middle Eastern nation to look into this technology. Last week a delegation of Chinese WinSun officials traveled to Riyadh, the capital of the Kingdom of Saudi Arabia, to discuss construction 3D printing. Among others, the Chinese construction 3D printing pioneers were invited to 3D print up to 1.5 million housing units over the next five years.

WinSun is the company that made construction 3D printing a practical reality. Back in 2014, the Shanghai-based company created headlines all over the internet for building not one, but ten 3D printed houses in less than 24 hours. Since then, Shanghai WinSun Decoration Design Engineering Co., to give its full name, has been building on that initial achievement with one 3D printed concrete creation after another. Back in March, they even unveiled two gorgeous 3D printed Chinese courtyards.

Read more

Smart bricks capable of recycling wastewater and generating electricity from sunlight are being developed by a team of scientists from the University of the West of England (UWE Bristol). The bricks will be able to fit together and create ‘bioreactor walls’ which could then be incorporated in housing, public building and office spaces.

The UWE Bristol team is working on the smart technologies that will be integrated into the in this pan European ‘Living Architecture’ (LIAR) project led by Newcastle University. The LIAR project brings together living architecture, computing and engineering to find a new way to tackle global sustainability issues.

The smart living bricks will be made from bio-reactors filled with microbial cells and algae. Designed to self-adapt to changing environmental conditions the smart bricks will monitor and modify air in the building and recognise occupants.

Read more

Now, a team of engineers at Washington University in St. Louis has found a way to use graphene oxide sheets to transform dirty water into drinking water, and it could be a global game-changer.

“We hope that for countries where there is ample sunlight, such as India, you’ll be able to take some dirty water, evaporate it using our material, and collect fresh water,” said Srikanth Singamaneni, associate professor of mechanical engineering and materials science at the School of Engineering & Applied Science.

The new approach combines bacteria-produced cellulose and graphene oxide to form a bi-layered biofoam. A paper detailing the research is available online in Advanced Materials.

Read more

Big Data and Obama’s Brain Initiative — As we harness mass volumes of information and the current tech explosion around information; we will seeing an accelerated growing need/ urgency for more advance AI, QC, and new brain-mind interface intelligence to assist others when working with both super-intelligence AI and the mass volumes of information.


Engineers are experimenting with chip design to boost computer performance. In the above layout of a chip developed at Columbia, analog and digital circuits are combined in a novel architecture to solve differential equations with extreme speed and energy efficiency. Image: Simha Sethumadhavan, Mingoo Seok and Yannis Tsividis/Columbia Engineering.

In the big data era, the modern computer is showing signs of age. The sheer number of observations now streaming from land, sea, air and space has outpaced the ability of most computers to process it. As the United States races to develop an “exascale” machine up to the task, a group of engineers and scientists at Columbia have teamed up to pursue solutions of their own.

The Data Science Institute’s newest working group— Frontiers in Computing Systems —will try to address some of the bottlenecks facing scientists working with massive data sets at Columbia and beyond. From astronomy and neuroscience, to civil engineering and genomics, major obstacles stand in the way of processing, analyzing and storing all this data.

Read more