Toggle light / dark theme

New work on linear-probing hash tables from MIT

MIT is an acronym for the Massachusetts Institute of Technology. It is a prestigious private research university in Cambridge, Massachusetts that was founded in 1861. It is organized into five Schools: architecture and planning; engineering; humanities, arts, and social sciences; management; and science. MIT’s impact includes many scientific breakthroughs and technological advances.

Ruonan Han seeks to push the limits of electronic circuits.

Ruonan Han’s research is driving up the speeds of microelectronic circuits to enable new applications in communications, sensing, and security.

Han, an associate professor who recently earned tenured in MIT

MIT is an acronym for the Massachusetts Institute of Technology. It is a prestigious private research university in Cambridge, Massachusetts that was founded in 1861. It is organized into five Schools: architecture and planning; engineering; humanities, arts, and social sciences; management; and science. MIT’s impact includes many scientific breakthroughs and technological advances.

Magnetene could have useful applications as a lubricant in implantable devices or other micro-electro-mechanical systems.

A team of researchers from University of Toronto Engineering and Rice University have reported the first measurements of the ultra-low-friction behaviour of a material known as magnetene. The results point the way toward strategies for designing similar low-friction materials for use in a variety of fields, including tiny, implantable devices.

Magnetene is a 2D material, meaning it is composed of a single layer of atoms. In this respect, it is similar to graphene 0, a material that has been studied intensively for its unusual properties — including ultra-low friction — since its discovery in 2004.

A team of researchers from University of Toronto Engineering and Rice University have reported the first measurements of the ultra-low-friction behavior of a material known as magnetene. The results point the way toward strategies for designing similar low-friction materials for use in a variety of fields, including tiny, implantable devices.

With the potential to image fast-moving objects.

When asked what superpowers they would like to have, many say the ability to see through things. Now, there may be a camera that could give people that gift.

Developed by Northwestern Engineering researchers, the new high-resolution camera can see around corners and through human skin and even bones. It also has the potential to image fast-moving objects such as speeding cars or even the beating heart.

The relatively new research field is called non-line-of-sight (NLoS) imaging and comes with a level of resolution so high that it could even capture the tiniest capillaries at work.

“Our technology will usher in a new wave of imaging capabilities,” said in a statement the McCormick School of Engineering’s Florian Willomitzer, first author of the study.

But it might not be a success, warns Elon Musk.

SpaceX’s launch vehicle scheduled to take humans back to the Moon is expected to make its first orbital flight as early as January 2022.

Speaking in a video call at the fall meeting of the National Academies of Sciences, Engineering, and Medicine, CEO Elon Musk said that SpaceX is scheduled to carry out some tests in December, ahead of Starship’s first orbital flight in January, Business Insider reported.

The biggest launch vehicle built to date, SpaceX’s Starship consists of two parts, a first stage booster called Super Heavy and the actual spacecraft that gives it the name, Starship. Both these components are powered by SpaceX’s Raptor engines but differ in capacities. When finally ready, the Super Heavy is expected to have 33 Raptor engines while the spacecraft will have just six. Both components are designed to be reusable and are expected to play an important role in taking humankind to Moon, Mars, and even beyond, Space reported.

Full Story:

Have you ever experimented with food dye? It can make cooking a lot more fun, and provides a great example of how two fluids can mix together well—or not much at all.

Add a small droplet in water and you might see it slowly dissolve in the larger liquid. Add a few more drops and perhaps you’ll see a wave of color spread, the colored droplets spreading and breaking apart to diffuse more thoroughly. Add a spoon and begin stirring quickly, and you’ll probably find that the water fully changes color, as desired.

Researchers at the USC Viterbi School of Engineering, led by Ivan Bermejo-Moreno, assistant professor of aerospace and mechanical engineering, studied a similar phenomenon with gases at , with an eye toward more efficient mixing to support supersonic scramjet engines. In the study, published in Physics of Fluids, USC Viterbi Ph.D. Jonas Buchmeier, along with Xiangyu Gao (USC Viterbi Ph.D. ‘20) and former visiting M.Sc. student Alexander Bußmann (Technical University Munich), developed a novel tracking method that zoomed in on the fundamentals of how mixing happens. The study helps understand, for example, how injected interacts with the surrounding oxidizers (air) in the to make it operate optimally, or how interstellar gases mix after a supernova explosion to form . The method focuses on the geometric and physical properties of the turbulent swirling motions of gases and how they change shape over time as they mix.

While traditional computers use magnetic bits to represent a one or a zero for computation, quantum computers use quantum bits or qubits to represent a one or a zero or simultaneously any number in between.

Today’s quantum computers use several different technologies for qubits. But regardless of the technology, a common requirement for all quantum computing qubits is that it must be scalable, high quality, and capable of fast quantum interaction with each other.

IBM uses superconducting qubits on its huge fleet of about twenty quantum computers. Although Amazon doesn’t yet have a quantum computer, it plans to build one using superconducting hardware. Honeywell and IonQ both use trapped-ion qubits made from a rare earth metal called ytterbium. In contrast, Psi Quantum and Xanadu use photons of light.

Atom computing chose to use different technology — nuclear-spin qubits made from neutral atoms. Phoenix, the name of Atom’s first-generation, gate-based quantum computer platform, uses 100 optically trapped qubits.

Full Story:

With the recent COP talks in mind, is this the Eco alternative to rocketry? And are there perhaps others?


I talked about Spinlaunch a few years ago, they wanted to reduce space launch costs by throwing the launch vehicles out of a spinning launcher at hypersonic speeds. I was somewhat skeptical as to the chances of solving the engineering problems inherent in this, but recently they demonstrated a mach 1 launch using their 1/3 scale launcher, so they’re already making progress on developing a viable launch syste.

https://www.spinlaunch.com/

To produce a cost-effective redox flow battery, researchers based at the South China University of Technology have synthesized a molecular compound that serves as a low-cost electrolyte, enabling a stable flow battery that retains 99.98% capacity per cycle. They published their approach on August 14 in the Energy Material Advances.

Comprising two tanks of opposing liquid electrolytes, the battery pumps the positive and negative liquids along a membrane separator sandwiched between electrodes, facilitating ion exchanges to produce energy. Significant work has been dedicated to developing the negative electrolyte liquid, while the positive electrolyte liquid has received less attention, according to corresponding author Zhenxing Liang, professor in the Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology.

“Aqueous redox flow batteries can realize the stable electrical output for using unsteady solar and wind energy, and they have been recognized as a promising large-scale energy storage ,” Liang said. “Electroactive organic merit of element abundance, low cost and flexible molecular control over the electrochemical features for both positive and negative electrolytes are regarded as key to developing next-generation redox flow batteries.”