Toggle light / dark theme

Traditional wisdom says that 3D printers are unsuitable for manufacturing. There are several reasons for that, including cost, part quality, and time, but labor is one of the most significant challenges. With conventional 3D printers, an operator must remove parts between jobs. That has a cost and slows down large production runs. Belt 3D printers solve this problem and also allow for infinite printing in one axis. Tinybelt, a new 3D printer on Kickstarter right now, makes this technology affordable.

The Tinybelt Kickstarter campaign is currently a third of the way to its $80,000 funding goal and needs your help to reach that goal. But you won’t want to contribute out of a sense of charity — you’ll want to back this campaign because Tinybelt has a lot to offer at an extremely competitive price. Tinybelt’s closest competition, the Creality CR-30 “3DPrintMill,” costs about $1,050. Tinybelt is available on Kickstarter right now for $499. Even at that low price, Tinybelt has a larger build volume than the competition.

As with other belt 3D printers 0, Tinybelt has one axis that is infinite. That means you can print parts as long as you want or print an unlimited number of parts—or both. The other two axes are 300mm and 200mm, which is almost twice the area of the Creality CR-30. A special nozzle made by Slice Engineering for the Mosquito hot end allows for printing at a shallower angle. Other specs are comparable, including the use of a dual-gear Bowden extruder.

Not long ago, Formlabs launched a new ESD Resin specifically for applications that need to keep parts safe from electrostatic discharge (ESD). Now, the double unicorn has announced the latest member of its selective laser sintering (SLS) range of materials—the new high-performance Nylon 12 GF Powder. Good for 3D printing engineering and manufacturing functional prototypes and end-use parts that require thermal stability and structural rigidity, the newly launched material offers excellent stiffness and is the latest meant for use with the Formlabs Fuse 1 industrial SLS 3D printer, which was released last year.

Formlabs’ Nylon 12 GF powder makes it possible to 3D print parts that are thermally stable, and can maintain their dimensional accuracy under load. In the past, glass-filled Nylon materials have been used for a variety of applications, such as 3D printing a scale model, a prosthetic drum stick, a bike rack, loudspeakers, and even a bar! This particular material—one of many Formlabs is planning to introduce for its industrial Fuse 1 3D printer—is said to be a good choice for printing threads and sockets, strong jigs and fixtures, parts subjected to high temperatures and sustained loading, functional prototypes for compsite parts, and replacement parts.

Fabien Cousteau has a vision for how humans can live and work in the ocean. He imagines that long-term stays under the waves could be enabled through the construction of underwater habitats, which would look and feel like houses, as opposed to just sealed, submarine-like bubbles.

These habitats would have a galley, kitchen, workspace, and sleeping quarters, he describes. And of course, there would be windows, or viewports, to the outside world, and a front door in the form of a moon pool that will actually be on the bottom of the house. This would allow easy access into and out of the facility.

The project, called Proteus, would be a marine analog to the International Space Station, and would primarily accommodate aquanauts, the equivalent of an astronaut in the ocean. It’s an idea that has been bubbling for some time now. But it could start taking shape relatively soon. Proteus Ocean Group, a private company which would operate and run Proteus, has recently signed an engineering, procurement, and construction (EPC) contract with a firm that has expertise in creating hyperbaric and pressure vessels in the ocean environment. Much of what Proteus is doing in terms of the technology they’re exploring is similar to space technology.

Using corn for fuel seems like a dumb idea in light of new research.

Recommended Books & Car Products — http://amzn.to/2BrekJm.
EE Shirts! — http://bit.ly/2BHsiuo.

Ethanol makes up 10% of most of the gasoline sold in the United States. A large part of why Ethanol is so prevalent is that the Renewable Fuel Standard, created in 2005, wanted to reduce the emissions of the fuels we use. Ethanol created from corn is renewable, because the corn takes carbon from the atmosphere to grow, creating a cycle that minimizes how much carbon is added to the atmosphere. At least, that’s the story we were told.

New research out of University of Wisconsin — Madison, suggests that “the carbon intensity of corn ethanol is no less than gasoline and likely at least 24% higher.” What’s the solution? We need to choose options that have a greater percentage of net emissions reductions, so that we don’t unintentionally increase emissions if regulators estimated predictions are incorrect.

Video References:
Main Study — https://www.pnas.org/doi/10.1073/pnas.2101084119
EPA Impact Analysis — https://19january2017snapshot.epa.gov/sites/production/files…r10006.pdf.
UW Article — https://news.wisc.edu/at-bioenergy-crossroads-should-corn-et…ew-mirror/
Oxygenated Fuels — https://www.epa.gov/ust/fuel-oxygenates-and-usts.
TEL to MTBE to Ethanol — https://doi.org/10.1080/10406026.2014.967057
Octane Numbers — https://energy.mit.edu/wp-content/uploads/2008/01/MIT-LFEE-08-001-RP.pdf.
Harvard Law Research — https://eelp.law.harvard.edu/2020/09/next-generation-complia…odern-era/
Harvard Law Research Pt. 4 — http://eelp.law.harvard.edu/wp-content/uploads/Cynthia-Giles-Part-4-FINAL.pdf.
Renewable Fuels Standard — https://www.epa.gov/renewable-fuel-standard-program.
US DOE — https://afdc.energy.gov/fuels/ethanol_fuel_basics.html.
Pro Corn Ethanol Study — https://afdc.energy.gov/files/u/publication/ethanol-ghg-reduction-with-greet.pdf.
Counter Study — https://iopscience.iop.org/article/10.1088/1748-9326/ac2e35/meta.

Engineering Explained is a participant in the Amazon Influencer Program.

A new video I uploaded to youtube about the relations between science fiction, science and technology.


Presentation given at the Imaginative Fiction Writers Association.

From Star Trek to Asimov. How science fiction inspired real-world innovations, and more.

Ways to support this channel:
Buy Escape Velocity: https://www.amazon.com/gp/product/B072NWFWPR?tag=lifeboatfound-20
Amazon Author page: http://amazon.com/author/ronfriedman.
Pi Coin : https://minepi.com/raanans.
Quora: https://spacefaringcivilization.quora.com/
To register to my newsletter: https://ronsfriedman.wordpress.com/subscribe/

My Website:

High-fidelity touch has the potential to significantly expand the scope of what we expect from computing devices, making new remote sensory experiences possible. The research on these advancements, led by a pair of researchers from the J. Mike Walker Department of Mechanical Engineering at Texas A&M University, could help touchscreens simulate virtual shapes.

Dr. Cynthia Hipwell is studying at the finger-device level, while Dr. Jonathan Felts is researching friction in the interaction between single skin cells and the glass of the touchscreen interface. The two are bringing together their respective areas of expertise to apply friction principles at the to finger-device interaction mechanics.

Hipwell highlighted the significance of the pursuit by comparing it to the technologies currently available for conveying immersive and through high-fidelity audio and video.

Turbojet engines are an incredible piece of 20th century engineering that except for some edge cases, have mostly been replaced by Turbofans. Still, even the most basic early designs were groundbreaking in their time. Material science was applied to make them more reliable, more powerful, and lighter. But all of those incredible advances go completely out the window when you’re [Joel] of [Integza], and you prefer to build your internal combustion engines using repurposed butane canisters and 3D printed parts as you see in the video below the break.

To understand [Integza]’s engine, a quick explanation of Turbojet engines is helpful. Just like any other internal combustion engine, air is compressed, fuel is burned, and the reaction produces work. In a turbojet, a compressor compresses air. Fuel is added in a combustor and ignited, and the expanding exhaust drives a turbine that in turn drives the compressor since both are attached to the same shaft. Exhaust whose energy isn’t spent in turning the turbine is expelled and produces thrust, which propels the engine and the vehicle it’s attached to in the opposite direction. Simple, right? Right! Until the 3D printer comes in.

Sadly for 3D printed parts, they are made of plastic. Last we checked, plastic isn’t metal, and so 3D printing a turbine to give the extremely hot exhaust something turn just isn’t going to work. But what if you just skipped the whole turbine part, and powered the compressor with an electric motor? And instead of using an axial compressor with tons of tiny blades that would likely be impossible to 3D print with enough strength, you went with a sturdy, easy to print centrifugal compressor? Of course, that’s exactly what [Integza] did, or we wouldn’t be talking about it. The results are fantastic, especially considering that the entire machine was built with 3D printing and a home made spot welder.

Engineers working to reverse the proliferation of greenhouse gases know that in addition to reducing carbon dioxide emissions we will also need to remove carbon dioxide from power plant fumes or from the skies. But, what do we do with all that captured carbon? Matteo Cargnello, a chemical engineer at Stanford University, is working to turn it into other useful chemicals, such as propane, butane or other hydrocarbon fuels that are made up of long chains of carbon and hydrogen.

“We can create gasoline, basically,” said Cargnello, who is an assistant professor of chemical engineering. “To capture as much as possible, you want the longest chain hydrocarbons. Chains with eight to 12 would be the ideal.”

A new catalyst, invented by Cargnello and colleagues, moves toward this goal by increasing the production of long-chain hydrocarbons in chemical reactions. It produced 1,000 times more butane—the longest hydrocarbon it could produce under its maximum pressure—than the standard catalyst given the same amounts of carbon , hydrogen, catalyst, pressure, heat and time. The new catalyst is composed of the element ruthenium—a rare transition metal belonging to the platinum group—coated in a thin layer of plastic. Like any catalyst, this invention speeds up chemical reactions without getting used up in the process. Ruthenium also has the advantage of being less expensive than other high-quality catalysts, like palladium and platinum.

Nikola Tesla’s vision of the world is about to become reality.

#engineering


Wireless electricity is a 100-year-old dream that just might turn into reality in the coming years. The advent of wireless charging, electric vehicles, 5G, and the need for greater sustainability have led to a push for the development of fully operational wireless transmission technology in different parts of the world.

From America’s Wave Inc. to Japan-based Space Power Technologies and New Zealand’s energy startup Emrod, there are a number of companies that are currently working on wireless power transmission technology. Field tests have also begun for some systems, and it will be interesting to see who comes first in this race to offer an efficient, economical, and viable wireless electricity solution.

Before we get into the different revolutionary initiatives concerning wireless electricity, it is important to understand its origin and the underlying concept behind this technology that makes it a reliable choice for future power needs.

“Aside from vastly expanding the geographic coverage of this energy source, the sheer feat of engineering involved deserves a mention. Until now, the deepest artificial point on Earth has been the Kola Superdeep Borehole in Russia. That Soviet-era project reached 12,262 metres (40,230 ft) below ground. Quaise would smash that record if achieving the full potential of 20,000 metres (65,600 ft).” https://www.futuretimeline.net/blog/2022/02/28-geothermal-en…nology.htm


A new drilling technology able to reach depths of 20 km could enable geothermal power to be accessed almost anywhere in the world.