Toggle light / dark theme

World’s largest salt cavern compressed air storage project breaks ground

Compressed air energy storage (CAES) is expected to play a key role in China’s clean energy push and the latest project announcement attests to the fact.

According to a media statement from the state-owned Assets Supervision and Administration Commission of the State Council, construction started on a 350 MW/1.4 GWh CAES project in the province of Shangdong on September 28.

Once completed, the Tai’an demonstration project is expected to be the world’s largest salt cavern CAES project, comprising two units for a total of 600 MW. The 350 MW system, which will be delivered in the first phase, is being jointly built by China Energy Engineering Group and Tai’an-based Taian Taishan New Energy Development to the tune of CNY 2.23 billion ($311 million).

Unique Property Found in Complex Nanostructures for the First Time

Researchers from North Carolina State University and The University of Texas at Austin have discovered a unique property in complex nanostructures that had previously only been seen in simple nanostructures. They have also uncovered the internal mechanics of the materials that allow for this property to exist.

The findings were reported in a recent paper that was published in the journal Proceedings of the National Academy of Sciences. The scientists found these properties in oxide-based “nanolattices,” which are tiny, hollow materials with a structure resembling that of sea sponges.

“This has been seen before in simple nanostructures, like a nanowire, which is about 1,000 times thinner than a hair,” said Yong Zhu, a professor in the Department of Mechanical and Aerospace Engineering at NC State, and one of the lead authors on the paper. “But this is the first time we’ve seen it in a 3D nanostructure.”

Toward Flawless Atom Optics

The engineering of so-called Floquet states leads to almost-perfect atom-optics elements for matter-wave interferometers—which could boost these devices’ ability to probe new physics.

Since Michelson and Morley’s famous experiment to detect the “luminiferous aether,” optical interferometry has offered valuable tools for studying fundamental physics. Nowadays, cutting-edge applications of the technique include its use as a high-precision ruler for detecting gravitational waves (see Focus: The Moon as a Gravitational-Wave Detector) and as a platform for quantum computing (see Viewpoint: Quantum Leap for Quantum Primacy). But as methods for cooling and controlling atoms have advanced, a new kind of interferometer has become available, in which light waves are replaced by matter waves [1]. Such devices can measure inertial forces with a sensitivity even greater than that of optical interferometers [2] and could reveal new physics beyond the standard model.

Hyderabad Students Convert Discarded Bike Into Low-Cost EV With Wireless Charging

The Indian Electric Vehicle market is set to reach a sales volume of 10.8 lakh units by 2025. However, these vehicles are currently at a high price and are not affordable to consumers in low-income categories.

To bridge this gap, a team of seven students at the KL University, Hyderabad have retrofitted an old and discarded bike into an EV.

“We also added futuristic features including wireless charging and cell balancing, which ensures equalised charging,” says Charan Sai (21), a fourth-year student of Electronics and Electrical Engineering, and the lead of the project.

A high-resolution, wearable electrotactile rendering device that virtualizes the sense of touch

A collaborative research team co-led by City University of Hong Kong (CityU) has developed a wearable tactile rendering system, which can mimic the sensation of touch with high spatial resolution and a rapid response rate.

The team demonstrated its application potential in a braille display, adding the sense of touch in the metaverse for functions such as virtual reality shopping and gaming, and potentially facilitating the work of astronauts, deep-sea divers and others who need to wear thick gloves.

“We can hear and see our families over a long distance via phones and cameras, but we still cannot feel or hug them. We are physically isolated by space and time, especially during this long-lasting pandemic,” said Dr. Yang Zhengbao, Associate Professor in the Department of Mechanical Engineering of CityU, who co-led the study.

Hurricane Resistant Homes

Deltec Homes is changing the way the world builds. For over five decades, we have designed and engineered homes to fight climate change and withstand the harshest of weather conditions. The connections, both inside and out, that our homes provide make it truly the strongest home for people and our planet.

The engineering and innovation behind each Deltec is why they have stood against some of the most detrimental storms in history including direct hits from Hurricanes Dorian, Michael, Maria, Irma, Harvey, Sandy, Katrina, Hugo, Ivan and Charley.

Please check out this June, 2021, Weather Channel interview of our President, Steve Linton, describing why our homes are hurricane resistant.

5 Engineer Entrepreneurs Who Have Made it Big in Non-Engineering Sectors

Engineering and entrepreneurship — a match made in heaven!

Entrepreneurship is often glamorized, but in reality, it takes a lot of time and effort to make it. After all, there’s a reason why most startups fail. Additionally, managing a business requires specific skills, such as attention to detail and the ability to lead others. Having an analytical mindset is just as important.

Given these aspects, it’s not surprising that engineers make great entrepreneurs. Jeff Bezos, Bill Gates, Steve Wozniak, and Henry Ford all started their careers as engineers. However, not all engineers work in tech.


Hunters Race/Unsplash.

From Engineer to Entrepreneur.
5 engineer entrepreneurs who have made it big in non-engineering sectors
Credits: andresr/iStocknullEngineering and technology go hand in hand. Take the iPhone, for example. Its design, features, and performance are a result of engineering excellence.

The Social Brain Ep.4: Brain Decoding: The Science of ‘Mind Reading’

Can scientists read your mind and figure out what you’re thinking just by looking at your brain? Well, sort of.

In this episode of The Social Brain with Taylor Guthrie (@The Cellular Republic) and I (@Sense of Mind) talk about a fascinating new area of cognitive neuroscience, called “brain decoding” as well as its counterpart, “brain encoding,” and related topics. It all centers on the question posed above and the future applications, some of which are scary while others are inspiring.

– What do you want us to cover in future episodes? Drop it in the comments!

Link to follow:
Make sure to subscribe to Taylor’s Channel: @The Cellular Republic.

Videos that we mentioned:
- Breaking the Neural Code (James Haxby talk): https://youtu.be/gl3du4CaALg.
- Kanwisher vs. Haxby Debate: https://youtu.be/u1xTfTPqWmo.
- Decoding Language Representation (Alexander Huth talk): https://youtu.be/rmqzLv089b4
- Engineering Thoughts and Memories (Jack Gallant talk): https://youtu.be/muwIhFLqies.

Podcast: Social Brain Podcast:

Researchers resolve decades-long debate about shock-compressed silicon with unprecedented detail

Silicon, an element abundant in Earth’s crust, is currently the most widely used semiconductor material and is important in fields like engineering, geophysics and plasma physics. But despite decades of studies, how the material transforms when hit with powerful shockwaves has been a topic of longstanding debate.

“One might assume that because we have already studied in so many ways there is nothing left to discover,” said Silvia Pandolfi, a researcher at the Department of Energy’s SLAC National Accelerator Laboratory. “But there are still some important aspects of its behavior that are not clear.”

Now, researchers at SLAC have finally put this controversy to rest, providing the first direct, high-fidelity view of how a single silicon crystal deforms during shock compression on nanosecond timescales. To do so, they studied the crystal with X-rays from SLAC’s Linac Coherent Light Source (LCLS) X-ray laser. The team published their results in Nature Communications on September 21st. What they learned could lead to more accurate models that better predict what will happen to certain materials in .

Generating New Materials

Inspired by the way termites build their nests, scientists at the California Institute of Technology (Caltech) developed a framework to design new materials that mimic the fundamental rules hidden in nature’s growth patterns. The researchers demonstrated that by using these rules, it is possible to create materials designed with specific programmable properties.

The research was published in the journal Science on August 26. It was led by Chiara Daraio, G. Bradford Jones Professor of Mechanical Engineering and Applied Physics and Heritage Medical Research Institute Investigator.

“Termites are only a few millimeters in length, but their nests can stand as high as 4 meters—the equivalent of a human constructing a house the height of California’s Mount Whitney,” says Daraio. If you peer inside a termite nest you will see a network of asymmetrical, interconnected structures, similar to the interior of a sponge or a loaf of bread. Made of sand grains, dirt, dust, saliva, and dung, this disordered, irregular structure appears arbitrary. However, a termite nest is specifically optimized for stability and ventilation.