Menu

Blog

Archive for the ‘engineering’ category: Page 109

Nov 10, 2020

Making 3D nanosuperconductors with DNA

Posted by in categories: biotech/medical, chemistry, computing, engineering, nanotechnology, quantum physics

Three-dimensional (3D) nanostructured materials—those with complex shapes at a size scale of billionths of a meter—that can conduct electricity without resistance could be used in a range of quantum devices. For example, such 3D superconducting nanostructures could find application in signal amplifiers to enhance the speed and accuracy of quantum computers and ultrasensitive magnetic field sensors for medical imaging and subsurface geology mapping. However, traditional fabrication tools such as lithography have been limited to 1-D and 2-D nanostructures like superconducting wires and thin films.

Now, scientists from the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory, Columbia University, and Bar-Ilan University in Israel have developed a platform for making 3D superconducting nano-architectures with a prescribed organization. As reported in the Nov. 10 issue of Nature Communications, this platform is based on the self-assembly of DNA into desired 3D shapes at the nanoscale. In DNA self-assembly, a single long strand of DNA is folded by shorter complementary “staple” strands at specific locations—similar to origami, the Japanese art of paper folding.

“Because of its structural programmability, DNA can provide an assembly platform for building designed nanostructures,” said co-corresponding author Oleg Gang, leader of the Soft and Bio Nanomaterials Group at Brookhaven Lab’s Center for Functional Nanomaterials (CFN) and a professor of chemical engineering and of applied physics and at Columbia Engineering. “However, the fragility of DNA makes it seem unsuitable for functional device fabrication and nanomanufacturing that requires inorganic materials. In this study, we showed how DNA can serve as a scaffold for building 3D nanoscale architectures that can be fully “converted” into inorganic materials like superconductors.”

Nov 10, 2020

Tiny device enables new record in super-fast quantum light detection

Posted by in categories: computing, engineering, quantum physics

Bristol researchers have developed a tiny device that paves the way for higher performance quantum computers and quantum communications, making them significantly faster than the current state-of-the-art.

Researchers from the University of Bristol’s Quantum Engineering Technology Labs (QET Labs) and Université Côte d’Azur have made a new miniaturized detector to measure quantum features of light in more detail than ever before. The device, made from two working together, was used to measure the of “squeezed” quantum light at record high speeds.

Harnessing unique properties of quantum physics promises novel routes to outperform the current state-of-the-art in computing, communication and measurement. Silicon photonics—where light is used as the carrier of information in silicon micro-chips—is an exciting avenue towards these next-generation technologies.

Nov 9, 2020

The future of space colonization – terraforming or space habitats?

Posted by in categories: biological, Elon Musk, engineering, environmental, habitats, space travel

The idea of terraforming Mars is a fascinating idea. … But just how long would such an endeavor take, what would it cost us, and is it really an effective use of our time and energy?


Ultimately, Yakovlev thinks that space biospheres could also be accomplished within a reasonable timeframe – i.e. between 2030 and 2050 – which is simply not possible with terraforming. Citing the growing presence and power of the commercial space sector, Yakovlev also believed a lot of the infrastructure that is necessary is already in place (or under development).

Continue reading “The future of space colonization – terraforming or space habitats?” »

Nov 7, 2020

World’s longest laser — 270 km long — created

Posted by in categories: engineering, internet

Circa 2009.


A 270-kilometre optical fiber has been transformed into the world’s longest laser, a feat its inventors believe will lead to a radical new outlook on information transmission and secure communications.

Engineering academics at Aston University, UK, are leading research into ultralong fiber lasers, to create a platform capable of delivering ‘next generation’ information transmission, including telecommunications and broadband.

Continue reading “World’s longest laser -- 270 km long -- created” »

Nov 7, 2020

ISS: 20 years looking over Earth

Posted by in categories: engineering, habitats, space

To mark the 20th anniversary of continuous habitation of the International Space Station, ESA commissioned two graphic artists to illustrate the Station from two perspectives. We spoke to the artists and asked them how they approached this challenge.

The International Space Station celebrates a huge milestone on 2 November 2020. For two decades, it has continuously hosted humans in space. Eighteen ESA astronauts have flown to the Station. Altogether, more than 240 crew members and visitors from 19 countries have visited the station and made it their temporary home.

A collaboration between five space agencies, the station has become a symbol of peaceful international cooperation. It represents the best of our space engineering capabilities as well as humankind’s pursuit of scientific knowledge and exploration.

Nov 4, 2020

The No-Code Generation is arriving

Posted by in categories: computing, economics, education, engineering

In the distant past, there was a proverbial “digital divide” that bifurcated workers into those who knew how to use computers and those who didn’t.[1] Young Gen Xers and their later millennial companions grew up with Power Macs and Wintel boxes, and that experience made them native users on how to make these technologies do productive work. Older generations were going to be wiped out by younger workers who were more adaptable to the needs of the modern digital economy, upending our routine notion that professional experience equals value.

Of course, that was just a narrative. Facility with using computers was determined by the ability to turn it on and log in, a bar so low that it can be shocking to the modern reader to think that a “divide” existed at all. Software engineering, computer science and statistics remained quite unpopular compared to other academic programs, even in universities, let alone in primary through secondary schools. Most Gen Xers and millennials never learned to code, or frankly, even to make a pivot table or calculate basic statistical averages.

There’s a sociological change underway though, and it’s going to make the first divide look quaint in hindsight.

Oct 30, 2020

Predictive model reveals function of promising energy harvester device

Posted by in categories: biotech/medical, engineering

A small energy harvesting device that can transform subtle mechanical vibrations into electrical energy could be used to power wireless sensors and actuators for use in anything from temperature and occupancy monitoring in smart environments, to biosensing within the human body.

In research recently published online in the Journal of Micromechanics and Microengineering, engineers at Rensselaer Polytechnic Institute developed a for such a , which will allow researchers to better understand and optimize its functionalities.

“Sooner or later these harvesters will replace batteries, reducing associated environmentally and maintenance costs,” said Diana-Andra Borca-Tasciuc, a professor of mechanical, aerospace, and nuclear engineering at Rensselaer, who led this research effort.

Oct 27, 2020

Can lab-grown brains become conscious?

Posted by in categories: biotech/medical, engineering, law, neuroscience

Researchers are now calling for a set of guidelines, similar to those used in animal research, to guide the humane use of brain organoids and other experiments that could achieve consciousness. In June, the US National Academies of Sciences, Engineering, and Medicine began a study with the aim of outlining the potential legal and ethical issues associated with brain organoids and human-animal chimaeras.


A handful of experiments are raising questions about whether clumps of cells and disembodied brains could be sentient, and how scientists would know if they were.

Oct 27, 2020

Bridges with limb-inspired architecture can withstand earthquakes, cut repair costs

Posted by in category: engineering

Structural damage to any of the nation’s ailing bridges can come with a hefty price of billions of dollars in repairs. New bridge designs promise more damage-resistant structures and, consequently, lower restoration costs. But if these designs haven’t been implemented in the real world, predicting how they can be damaged and what repair strategies should be implemented remain unresolved.

In a study published in the journal Structure and Infrastructure Engineering, Texas A&M University and the University of Colorado Boulder researchers have conducted a comprehensive damage and repair assessment of a still-to-be-implemented design using a panel of experts from academia and industry. The researchers said the expert feedback method offers a unique and robust technique for evaluating the feasibility of bridge designs that are still at an early research and development phase.

“Bridges, particularly those in high-seismic regions, are vulnerable to damage and will need repairs at some point. But now the question is what kind of repairs should be used for different types and levels of damage, what will be the cost of these repairs and how long will the repairs take—these are all unknowns for new bridge designs,” said Dr. Petros Sideris, assistant professor in the Zachry Department of Civil and Environmental Engineering. “We have answered these questions for a novel bridge design using an approach that is seldomly used in structural engineering.”

Oct 25, 2020

Neural Dust: Millimeter-Sized Brain Stimulators

Posted by in categories: biotech/medical, computing, Elon Musk, engineering, neuroscience

“In a breakthrough study published on February 19th in Nature Biomedical Engineering, researchers connected neural dust implants reduced to 1.7 cubic millimeters to rat sciatic nerves. The implanted device, called the StimDust system, consisted of very few components, which will be scaled down for future applications. A piezoceramic ultrasonic transducer generated power allowing for wireless communication and stimulation. A capacitor stored any excess energy generated from ultrasonic beams. Bipolar stimulating electrodes directly interfaced with the nerve while a cuff attached to a small circuit-board allowed the device to adhere physically to the nerve. These components were sufficient to generate or record nerve-impulses. In anesthetized rodents, they elicited muscular contractions with the StimDust system.”


While Neuralink, Elon Musk’s startup-venture focused on creating a brain-computer interface, garners lots of coverage in the biotechnology space, other bioelectronics ventures continue innovating in this space.

iota Biosciences, a spin-off company from UC Berkley formed in 2017, made news two years ago by securing $15 million in Series A funding and again last year announcing a partnership with Astellas Pharma Inc. Bolstered by studies in rodents, iota Biosciences advances towards their vision. In a press release on their partnership, founders Jose Carmena and Michel Maharbiz commented:

Continue reading “Neural Dust: Millimeter-Sized Brain Stimulators” »