Toggle light / dark theme

Scientists make breakthrough with advanced technology generating water from thin air — and it could save millions of lives

I found this on NewsBreak.


Researchers in China have reportedly developed a new technology similar to hydropanels for harvesting water out of thin air that is powered by energy from the sun. The device could be especially useful in dry, arid areas where water — but not sunlight — is hard to come by.

The findings from the research team from Shanghai Jiao Tong University in China were published in the scientific journal Applied Physics Reviews.

“This atmospheric water harvesting technology can be used to increase the daily water supply needs, such as household drinking water, industrial water, and water for personal hygiene,” said Ruzhu Wang, one of the study’s authors.

California exceeds 100% of energy demand with renewables over a record 30 days

In a major clean energy benchmark, wind, solar, and hydro exceeded 100% of demand on California’s main grid for 30 of the past 38 days.

Stanford University professor of civil and environmental engineering Mark Z. Jacobson has been tracking California’s renewables performance, and he shares his findings on Twitter (X) when the state breaks records. Yesterday he posted:

Jacobson notes that supply exceeds demand for “0.25−6 h per day,” and that’s an important fact. The continuity lies not in renewables running the grid for the entire day but in the fact that it’s happening on a consistent daily basis, which has never been achieved before.

Giant battery to be installed underground as deep as Empire State Building is tall: ‘It’s a massive amount of storage’

A small town in central Utah is set to be the home of a new underground “battery” that will store hydrogen as a clean energy source.

According to The New York Times, developers are creating two caverns as deep as the Empire State Building is tall from a geological salt formation near Delta, Utah. These caverns, which are expected to be complete next year, will be able to store hydrogen gas.

The hydrogen will be produced nearby through a process called electrolysis. This will be done using excess solar and wind power in spring and fall, when demand for energy is low. Then it can be stored until peak energy demand hits in the summer — at that time, it would be burned at a power plant as a blend of hydrogen and natural gas.

Quantum Control Unlocked: Creating Resistance-Free Electron Channels

Unveiling Chiral Interface States

The chiral interface state is a conducting channel that allows electrons to travel in only one direction, preventing them from being scattered backward and causing energy-wasting electrical resistance. Researchers are working to better understand the properties of chiral interface states in real materials but visualizing their spatial characteristics has proved to be exceptionally difficult.

But now, for the first time, atomic-resolution images captured by a research team at Berkeley Lab and UC Berkeley have directly visualized a chiral interface state. The researchers also demonstrated on-demand creation of these resistance-free conducting channels in a 2D insulator.

Researchers Develop Simple Way To Harvest More “Blue Energy” From Waves

As any surfer will tell you, waves pack a powerful punch. We’re now making strides toward harnessing the ocean’s relentless movements for energy, thanks to advancements in “blue energy” technology. In a study published in ACS Energy Letters, researchers discovered that by moving the electrode from the middle to the end of a liquid-filled tube—where the water’s impact is strongest—they significantly boosted the efficiency of wave energy collection.

The tube-shaped wave-energy harvesting device improved upon by the researchers is called a liquid-solid triboelectric nanogenerator (TENG). The TENG converts mechanical energy into electricity as water sloshes back and forth against the inside of the tube. One reason these devices aren’t yet practical for large-scale applications is their low energy output. Guozhang Dai, Kai Yin, Junliang Yan, and colleagues aimed to increase a liquid-solid TENG’s energy harvesting ability by optimizing the location of the energy-collecting electrode.

CATL unveils Tesla Megapack competitor, claims zero degradation and more capacity

CATL has unveiled Tener, a new large scale energy storage system to compete with Tesla Megapack.

The system has almost twice the energy capacity of the Megapack, and CATL claims zero degradation after 5 years.

Tesla Megapack is the poster boy of large-scale energy storage.

The energy storage device has been used in most of the world’s largest energy storage projects, and it is expanding fast.