Menu

Blog

Archive for the ‘energy’ category: Page 81

Aug 7, 2023

Scientists Detect Highest-Energy Light Ever Seen From The Sun

Posted by in categories: energy, physics

The most energetic light ever seen emanating from the Sun has just been detected, creating a new puzzle for solar physicists to solve.

A 6-year observing campaign by more than 30 institutions across North America, Europe, and Asia has resulted in the first ever detection of solar gamma radiation in the teraelectronvolt (TeV) range.

Continue reading “Scientists Detect Highest-Energy Light Ever Seen From The Sun” »

Aug 6, 2023

Novel proton-conductive membranes for automobile fuel cells

Posted by in categories: chemistry, energy, sustainability, transportation

Fuel cells are compact energy conversion units that utilize clean energy sources like hydrogen and convert them into electricity through a series of oxidation–reduction reactions. Specifically, proton exchange membrane fuel cells (PEMFCs), an integral part of electric vehicles, utilize proton-conductive membranes for operation. Unfortunately, these membranes suffer from a trade-off between high durability and high ion conductivity, affecting the lifetime and performance of PEMFCs.

To overcome this issue, scientists have synthesized chemically and physically modified perfluorosulfonic acid polymer membranes, such as Nafion HP, Nafion XL, and Gore-Select, which have proven to be much more durable than unmodified membranes conventionally employed in fuel-cell operations.

Unfortunately, none of the existing proton-conductive membranes have fulfilled the highly challenging technical target—passing an accelerated durability test or a combined chemical and mechanical test—set by the U.S. Department of Energy (DOE) to facilitate their use in automobile fuel cells by 2025.

Aug 6, 2023

MIT engineers create an energy-storing supercapacitor from ancient materials

Posted by in categories: energy, engineering, sustainability, transportation

The two materials, the researchers found, can be combined with water to make a supercapacitor — an alternative to batteries — that could provide storage of electrical energy. As an example, the MIT researchers who developed the system say that their supercapacitor could eventually be incorporated into the concrete foundation of a house, where it could store a full day’s worth of energy while adding little (or no) to the cost of the foundation and still providing the needed structural strength. The researchers also envision a concrete roadway that could provide contactless recharging for electric cars as they travel over that road.

The simple but innovative technology is described this week in the journal PNAS, in a paper by MIT professors Franz-Josef Ulm, Admir Masic, and Yang-Shao Horn, and four others at MIT and at the Wyss Institute for Biologically Inspired Engineering.


MIT engineers created a carbon-cement supercapacitor that can store large amounts of energy. Made of just cement, water, and carbon black, the device could form the basis for inexpensive systems that store intermittently renewable energy, such as solar or wind energy.

Aug 4, 2023

Fourth Dimension Breakthrough: New Metamaterial Controls Energy Waves

Posted by in categories: energy, engineering

Scientists engineered a synthetic metamaterial to direct mechanical waves along a specific path, which adds an innovative layer of control to 4D reality, otherwise known as the synthetic dimension.

Everyday life involves the three dimensions or 3D — along an X, Y, and Z axis, or up and down, left and right, and forward and back. But, in recent years scientists like Guoliang Huang, the Huber and Helen Croft Chair in Engineering at the University of Missouri, have explored a “fourth dimension” (4D), or synthetic dimension, as an extension of our current physical reality.

Creation of a new synthetic metamaterial.

Aug 4, 2023

Scientists discover the highest-energy light coming from the sun

Posted by in category: energy

Sometimes, the best place to hide a secret is in broad daylight. Just ask the sun.

“The sun is more surprising than we knew,” said Mehr Un Nisa, a postdoctoral research associate at Michigan State University. “We thought we had this star figured out, but that’s not the case.”

Nisa, who will soon be joining MSU’s faculty, is the corresponding author of a new paper in the journal Physical Review Letters that details the discovery of the highest-energy light ever observed from the sun.

Aug 3, 2023

Diamagnetically stabilized magnet levitation

Posted by in categories: energy, materials

Year 2001 😗😁


Stable levitation of one magnet by another with no energy input is usually prohibited by Earnshaw’s theorem. However, the introduction of diamagnetic material at special locations can stabilize such levitation. A magnet can even be stably suspended between (diamagnetic) fingertips. A very simple, surprisingly stable room temperature magnet levitation device is described that works without superconductors and requires absolutely no energy input. Our theory derives the magnetic field conditions necessary for stable levitation in these cases and predicts experimental measurements of the forces remarkably well. New levitation configurations are described which can be stabilized with hollow cylinders of diamagnetic material. Measurements are presented of the diamagnetic properties of several samples of bismuth and graphite.

Aug 1, 2023

Low-cost additive turns concrete slabs into super-fast energy storage

Posted by in categories: energy, sustainability, transportation

MIT researchers have discovered that when you mix cement and carbon black with water, the resulting concrete self-assembles into an energy-storing supercapacitor that can put out enough juice to power a home or fast-charge electric cars.

We’ve written before about the idea of using concrete for energy storage – back in 2021, a team from the Chalmers University of Technology showed how useful amounts of electrical energy could be stored in concrete poured around carbon fiber mesh electrodes, with mixed-in carbon fibers to add conductivity.

MIT’s discovery appears to take things to the next level, since it does away with the need to lay mesh electrodes into the concrete, and instead allows the carbon black to form its own connected electrode structures as part of the curing process.

Aug 1, 2023

Electrified cement could turn houses and roads into nearly limitless batteries

Posted by in categories: energy, materials

Energy storing building materials could make on-demand power from renewables affordable worldwide.

Aug 1, 2023

Engineers create an energy-storing supercapacitor from ancient materials

Posted by in categories: energy, sustainability, transportation

Two of humanity’s most ubiquitous historical materials, cement and carbon black (which resembles very fine charcoal), may form the basis for a novel, low-cost energy storage system, according to a new study. The technology could facilitate the use of renewable energy sources such as solar, wind, and tidal power by allowing energy networks to remain stable despite fluctuations in renewable energy supply.

The two materials, the researchers found, can be combined with water to make a supercapacitor—an alternative to batteries—that could provide storage of electrical .

As an example, the MIT researchers who developed the system say that their supercapacitor could eventually be incorporated into the concrete foundation of a house, where it could store a full day’s worth of energy while adding little (or no) to the cost of the foundation and still providing the needed structural strength. The researchers also envision a concrete roadway that could provide contactless recharging for as they travel over that road.

Jul 31, 2023

Healing Power of Light: Biomimetic Materials Pulsed With Low-Energy Blue Light Can Reshape Damaged Corneas

Posted by in categories: energy, materials

A new study reveals that biomimetic materials, when pulsed with low-energy blue light, can reshape damaged corneas, including increasing their thickness. The findings have the potential to affect millions of people.

A team of University of Ottawa researchers and their collaborators have uncovered the immense potential of an injectable biomaterial that is triggered by low-energy blue light pulses for immediate repair of the eye’s domed outer layer.

Following a design approach guided by biomimicry—innovation that takes inspiration from nature—the multidisciplinary researchers’ compelling results show that a novel light-activated material can be used to effectively reshape and thicken damaged corneal tissue, promoting healing and recovery.

Page 81 of 369First7879808182838485Last