Toggle light / dark theme

Physicists uncover key to resolving long-standing inertial confinement fusion hohlraum drive deficit

“Significant effort has been invested over the years to pinpoint the physical cause of the radiation drive-deficit problem,” Chen said. “We are excited about this discovery as it helps resolve a decade-long puzzle in ICF research. Our findings point the way to an improvement in the predictive capabilities of simulations, which is crucial for the success of future fusion experiments.”

In NIF experiments, scientists use a device called a hohlraum—approximately the size of a pencil eraser—to convert into X-rays, which then compress a fuel capsule to achieve fusion.

For years, there has been a problem where the predicted X-ray energy (drive) was higher than what was measured in experiments. This results in the time of peak neutron production, or “bangtime,” occurring roughly 400 picoseconds too early in simulations. This discrepancy is known as the “drive-deficit” because modelers had to artificially reduce the laser drive in the simulations to match observed bangtime.

Spanish energy giant unveils two huge battery storage projects in Australia

Spanish energy giant Iberdrola has revealed two new battery storage projects in Australia – its biggest yet in the country – that will take its total capacity to more than 1,500 gigawatt hours.

The new batteries are a 250 megawatt (MW)/ 500 megawatt hour (MWh) Gin Gin project near Bundaberg in Queensland – although its EPBC application describes it only as a 500 MW project – and the 270 MW, 1,080 MWh Kingswood project in New South Wales (NSW).

To date, Iberdrola’s non-gas firming portfolio has been on the smaller side, making up just a fraction of the company’s 2.4 GW of installed renewables in Australia.

Whoever Controls Electrolytes will Pave the way for Electric Vehicles

Whoever Controls #Electrolytes will Pave the way for #ElectricVehicles.

Team from the Dept of Chemistry at POSTECH have achieved a breakthrough in creating a gel electrolyte-based battery that is both stable and commercially viable…


Team develops a commercially viable and safe gel electrolyte for lithium batteries. Professor Soojin Park, Seoha Nam, a PhD candidate, and Dr. Hye Bin Son from the Department of Chemistry at Pohang University of Science and Technology (POSTECH) have achieved a breakthrough in creating a gel electrolyte-based battery that is both stable and commercially viable. Their research was recently published in the international journal Small.

Lithium-ion batteries are extensively utilized in portable electronics and energy storage including electric vehicles. However, the liquid electrolytes used in these batteries pose a significant risk of fire and explosion, prompting ongoing research efforts to find safer alternatives. One alternative is the semi-solid-state battery which represents a middle ground between traditional lithium-ion batteries with liquid electrolytes and solid-state batteries. By using a gel-like electrolyte, these batteries offer enhanced stability, energy density, and a relatively longer lifespan.

Creating gel electrolytes typically involves a prolonged heat treatment at high temperatures, which can degrade the electrolyte, leading to diminished battery performance and increased production costs. Additionally, the interface resistance between the semi-solid electrolyte and the electrode poses a challenge in the fabrication process. Previous studies have encountered limitations in applying their findings directly to current commercial battery production lines due to complex fabrication methods and issues with large-scale applications.

Tesla secures absurdly large multi-billion Megapack contract

Tesla has secured an absurdly large contract to provide over 15 GWh of Megapack to California’s Intersect Power.

The Megapack has become the go-to, posterchild product for large-scale energy storage around the globe.

It’s by far Tesla’s fastest-growing product and enabled the company to deploy a record of 9.4 GWh of energy storage last quarter – more than twice the last record.

Something in space has been pulsing every 22 minutes for at least 35 years

Researchers reported the discovery of a new cosmic conundrum. The new object, GPM J1839-10, operates similarly to a pulsar, emitting frequent bursts of radio radiation. However, the physics that drives pulsars dictates that they would cease generating if they slowed too much, and practically every pulsar we know of blinks at least once every minute.

GPM J1839-10 has a pulse interval of 22 minutes. We don’t know what type of physics or things can power it.

Researchers develop novel electrode for improving flowless zinc-bromine battery

Due to rising environmental concerns, global energy production is shifting from fossil fuels to sustainable and renewable energy systems such as solar and wind power. Despite their advantages, they have two significant weaknesses: volatile power production and irregular supply. Hence, they are augmented with energy storage systems (ESSs).

Lithium-ion batteries are at the forefront of ESSs but are prone to fires due to flammable electrolytes and lithium-based materials. The flowless zinc-bromine battery (FLZBB), which uses non-flammable electrolytes, is a promising alternative, offering and a simple battery platform.

An FLZBB consists of a positive electrode, a , an electrolyte, and a separator to keep the electrodes apart. Unlike conventional zinc-bromine batteries, the electrolyte in FLZBB does not need to be pumped and is instead held in a gel-like container. Graphite felt (GF) is widely used as an electrode in many redox batteries due to its stability in acidic electrolytes.